PRECISION REPRODUCTIVE MEDICINE: THE DAWN OF PRE-IVF GENETIC SCREENING
by April O’Connor, MS, LCGC

IS THERE A SMALL RNA FINGERPRINT OF EMBRYO QUALITY AND HEALTH IN SPENT IVF MEDIA?
by Allison Tscherner, Leanne Stalker and Jonathan LaMarre

AN OVERVIEW OF THE EFFECTS OF AGE ON FERTILITY IN WOMEN
by Don Rieger, PhD

EXPLORING OUR EVOLVING GENETIC WORLD: HOW GENETIC TESTING PROVIDES A NEW ERA IN PATIENT CARE
by Rosalie Ferrari, BSc, MSc, ACS

ASRM 2016, Salt Lake City, UT
Advanced & Accurate Genetic Screens For Your Patients

Actionable & Reliable Results to Patients

EVOLVE PRE-CONCEPTION SCREENS

EVOLVE GENETIC CARRIER SCREENS
- Evolve FamilyReady™ Carrier Screen .. Cat # CFRS or Cat # CFRB

EVOLVE FEMALE GENETIC FERTILITY SCREENS
- Evolve Female Fertility Screen ... Cat # FFGB
- Evolve Premature Ovarian Failure Screen ... Cat # FPOB

EVOLVE MALE GENETIC FERTILITY SCREENS
- Evolve Male Fertility Screen .. Cat # MFGB

EVOLVE PRENATAL SCREENS

EVOLVE GENETIC NONINVASIVE PREGNATAL TESTING
- Evolve EarlyPregnancy™ Screen ... Cat # NIPT

Free Genetic Counseling Available With Every Screen
PRE-IVF GENETIC SCREENS

Male Fertility Screen
Female Fertility Screen
Premature Ovarian Failure Screen

The Missing Puzzle Piece of the Infertility Puzzle

www.evolvegene.com
CONTENTS

Fertility Genetics Magazine

#1 IN GENETIC FERTILITY SCREENING

The Featured Articles

Precision Reproductive Medicine: The Dawn of Pre-IVF Genetic Screening by April O'Connor ... 6

Is there a small RNA fingerprint of embryo quality and health in spent IVF media? by Allison Tscherner, Leanne Stalker and Jonathan LaMarre 12

Featured On The Cover

An Overview of the Effects of Age on Fertility in Women by Don Rieger, PhD ... 16

Exploring Our Evolving Genetic World: How Genetic Testing Provides A New Era in Patient Care by Rosalie Ferrari, BSc, MSc, ACS ... 24
29 Next Generation Sequencing Brings New Opportunities For Noninvasive Prenatal Aneuploidy Screening by Swan Cot, MSc

34 Current perspectives of Preimplantation Genetic Testing by Irene Miguel-Escalada, PhD - Marie Curie Postdoctoral Fellow

36 Multicentre study of the clinical relevance of screening IVF patients for carrier status of the annexin A5 M2 haplotype by Simon Fishel, Rashmi Patel, Alison Lytollis, Jeanette Robinson, Mary Smedley, Paula Smith, Craig Cameron, Simon Thornton, Ken Dowell, Glenn Atkinson, Adel Shaker, Philip Lowe, Rahnuma Kazem, Sandra Brett, and Anna Fox

44 AMH and AMHR2 genetic variants in Chinese women with primary ovarian insufficiency and normal age at natural menopause by Chunrong Qin, Zhen Yuan, Jilong Yao, Wenjie Zhu, Weiqing Wu, and Jiansheng Xie
Pre-IVF Genetic Screens
The Missing Puzzle Piece of the Infertility Puzzle

Genetic disorders are a common cause of infertility and account for:

- 1/5 cases of Male Infertility
- 1/7 cases of Female Infertility
- 1/4 cases of POF
- At least 10 percent of IVF failures

✔ Evolve Fertility Screen - the most comprehensive & accurate Pre-IVF genetic screens on the market

✔ Include Complimentary Pre- & Post- Test Genetic Counseling for healthcare providers and patients

Professional medical societies including the American Congress of Obstetricians and Gynecologists (ACOG) and the American Society for Reproductive Medicine (ASRM) recommend males and females with infertility issues have genetic screening.

www.EvolveGene.com
Evolve Genetic Fertility Screens

Leading The Way in Genetic Fertility Screening

- The latest and most advanced panels developed by leading scientists in the field of genetic testing
- The most comprehensive genetic screens for both men and women to better understand infertility risks
- Screening for the most relevant genetic anomalies related to male and female infertility
- Know fertility and reproductive health at a genetic level
- Performed in a leading CLIA & CAP certified genetic lab in USA
- New Perspective to Fertility Care

Free Genetic Counseling With Every Screen

Evolve FamilyReady™ Carrier Screen

Most Advanced, Accurate and Comprehensive carrier screen of the most relevant genes for all ethnic groups.

- Cutting edge NGS technologies on most relevant disorders for all ethnic groups
- 720 Variants in 148 genes
- Covers all ACOG/ACMG recommended disorders
- Fragile X syndrome repeat analysis
- Deletion/duplication analysis of CFTR, DMD, HBA1, HBA2, and MECP2
- Spinal muscular atrophy (SMA) testing
- Performed in a leading CLIA & CAP certified genetic lab in USA

www.EvolveGene.com
Support@EvolveGene.com US/Canada: 1-800-963-3203
Intl.: 001-519-763-2720 Fax: 1-203-453-1769
Precision Reproductive Medicine: The Dawn of Pre-IVF Genetic Screening

by April O’Connor, MS, LCGC
Lead Genetic Counselor, EvolveGene, LLC, 393 Soundview Rd., Guilford, CT 06437
You can contact April O’Connor at April@EvolveGene.com

Introduction

Through the years the field of genetics has played an integral role in forwarding the global practice of medicine beginning with Gregor Mendel publishing The Laws of Inheritance in 1866 based on his experiments with pea plants in 1857 (1). After this publication, the field of genetics continued to make significant contributions to the practice of medicine by way of: Sutton demonstrating chromosomes come in pairs and the first disease being attributed to a genetic cause in 1902, the term “genetics” being used for the first time in 1905, and the 1944 discovery that DNA mediates heredity coupled with Watson and Crick discovering its confirmation is a double helix in 1953 (1). These genetic contributions, among many others, forever changed the way medicine was practiced by giving healthcare providers novel insight into the etiology of human disease and new avenues by which to treat it. However, no advancement in the field of genetics would so profoundly change global medical service delivery models as one initiative did in the 20th century. In 1990, the National Institutes of Health and the Department of Energy launched the human genome project, an international effort to map, sequence, and characterize the human genome (1, 2). A working draft was completed in June 2000, and published in Science and Nature in February 2001 (1, 2). With this global initiative came a change which would revolutionize the practice of medicine from this point forward.

Advancements in the field of genetics born out of discoveries made by the Human Genome Project and other similar projects have led to the expansion and implementation of genetic techniques, such as next-generation sequencing (NGS), in the diagnosis and treatment of human disease (1-4). This idea of using genetic testing and genetic biomarkers to help guide clinical management and treatment of disease has come to be known as personalized medicine, or more recently, precision medicine (3-6). In recent years, precision medicine has become standard practice in the fields of oncology and cardiology by way of healthcare providers implementing genetic testing as part of initial patient evaluations to help guide the use of effective therapies and subsequently increase cost and time savings (4, 5, 7). Similarly, there is a great need for the implementation of precision medicine in the field of reproductive medicine, as evidenced by the 70 million infertile couples worldwide of which approximately 20% of male and 10% of female infertility cases are due to a genetic abnormality (8, 10, 12). Considering infertility is a challenge facing a significant number of couples trying to conceive, The American College of Obstetricians and Gynecologists (ACOG), The American Society for Reproductive Medicine (ASRM), The American Urological Association (AUA), and The Society of Obstetricians and Gynecologists of Canada (SOGC) all recommend that females and males with infertility have genetic screening (9-13). Consequently, genetic screening prior to the implementation of assisted reproductive technologies (ART) such as IVF can be of significant prognostic value in reproductive medicine and play a pivotal role in improving patient and provider outcomes.

The Prognostic Role of Chromosome Analysis in Male Infertility

Approximately 40% of infertility cases are attributed to male infertility, of which approximately 20% are due to genetic abnormalities (12, 14). More than 90% of male infertility cases are due to abnormal sperm parameters (e.g. azoospermia, and oligospermia) (12, 15). Within this population, constitutional chromosome abnormalities are the most frequent cause of male infertility (detected in up to 20% of cases) (14, 15). Sex chromosome aneuploidy, 47, XXY Klinefelter syndrome, is the most common chromosomal abnormality, detected in up to 14% of infertile men with azoospermia (14). Nearly 10% of males with Klinefelter syndrome are mosaic, (47, XXY/46, XY), and have subclinical phenotypic presentations remaining undiagnosed until adulthood when difficulty conceiving is experienced (14). Structural chromosome abnormalities (SCAs) occur in nearly 5% of infertile men when compared to 0.5% of men without infertility (14). Autosomal SCAs are more common in men with oligospermia occurring approximately 3% of the time, and SCAs involving sex chromosomes are more commonly associated with azoospermia (12.6%) (12, 14). The offspring of males with infertility due to chromosome abnormalities are at increased risk for autosomal and sex chromosome aneuploidy, and structural chromosome abnormalities (14). Hence, a chromosome analysis (karyotype) should be offered to male patients with infertility prior to performing fertility treatments such as IVF with ICSI with their sperm due to the increased risk of poor pregnancy outcome (14, 15). In addition, preimplantation genetic screening (PGS) is an important option for reproductive healthcare providers to discuss with men who have chromosome abnormalities to help reduce the risk of transferring chromosomally
infertility. Research has demonstrated that pre-IVF genetic screening of males with infertility for genes that are strongly associated with male infertility, such as AR, CATSPER1, FSHR, LHCGR, and CFTR, have prognostic value and help guide the choice of appropriate fertility treatment increasing favorable patient and provider outcomes.

Point mutations in the AR gene contribute to about 2% of all cases of male infertility (17). Mutations in this gene cause androgen insensitivity, and in males the phenotype can range from male androgen insensitivity syndrome (MAIS) related infertility to complete feminization (14, 17). Mutations in the AR gene are inherited in an X-linked manner, and therefore all daughters of affected men will be carriers, conferring an increased risk for male grandchildren to be affected (17). The majority of men with MAIS are considered to be sterile and many endocrinologists often advise to consider sperm donor or adoption (14). However, research has shown that TESE and IVF with ICSI have been used to achieve viable pregnancy for men with MAIS secondary to an AR mutation (17). Consequently, pre-IVF genetic screening of male infertility patients for AR mutations is necessary to inform providers of all fertility treatment options available to their patients, enabling them the opportunity to have healthy biological children if desired.

Mutations in CATSPER1 impair capacitation or hyperactivation in sperm at the site of fertilization (18, 19). The sperm of men with infertility secondary to a CATSPER1 mutation is often characterized as sluggish, having less direct movement, and lack of vigorous beating and bending in the tail region (19) The sperm cannot penetrate the zona pellucida due to failure to achieve Ca2+ mediated hyperactivated motility, and fertilization is not achieved (see Figure 1) (19). Therefore, men with CATSPER1 mutations cannot reproduce naturally and require fertility treatment by way of IVF with ICSI to have biological offspring (18, 19). Clinical evaluation of fertility in males is commonly limited to routine semen analysis which is a rather rudimentary assessment of male infertility, and although semen analysis is effective for determination of azoospermia/oligospermia, changes in sperm morphology and motility can be missed (18, 19). Thus, without pre-IVF genetic screening of infertile males for CATSPER1 mutations the likelihood of failed fertility treatments is greater due to providers not having the prior knowledge to select IVF with ICSI as the first fertility treatment employed in the CATSPER1 positive patient population.

Mutations in both the FSHR and LHCGR genes affect male fertility through resulting oligospermia or azoospermia in the patient (20-23). Approximately 20% of the population are carriers of genetic mutations associated with lower serum FSH levels and reduced FSHR expression or activity (20, 21). Hence, genetic screening for FSHR mutations could prove useful in clinical practice to diagnose some forms of male infertility with low-normal FSH levels and accompanying oligospermia. Recent data suggest that males presenting with oligospermia from an FSHR mutation and subsequent low FSH levels can benefit from treatment with FSH to restore fertility as opposed to
pursuing IVF with ICSI to conceive (21). With respect for men with LHCGR mutations, the most common reason for their resulting azoospermia is testicular failure characterized by low serum testosterone and elevated serum FSH levels (22, 23). Hence, often reproductive healthcare providers recommend the use of donor sperm or adoption for men with these clinical features of infertility (22). However, recent data suggest that supplementation with hCG and subsequent TESE can be successful in extracting mature sperm from the testicles achieving pregnancy through IVF with hCG in this patient population (22, 23). Consequently, pre-IVF genetic screening of infertile men for possible FSHR and LHCGR mutations has prognostic value and promotes awareness of additional fertility treatments which may be overlooked without the information provided through genetic screening.

Cystic fibrosis (CF) is an autosomal recessive inherited genetic disorder caused by mutations in the CFTR gene that occurs at a rate of approximately 1 in 3,500 newborns worldwide (24, 25) Approximately 98% of men who have CF and 79% of men who are CF carriers are infertile with obstructive azoospermia due to congenital bilateral absence of the vas deferens (CBAVD) (24, 25, 26). CBAVD accounts for approximately 1 to 2% of the population of infertile, but otherwise healthy, men and up to 25% of infertile men with obstructive azoospermia (26). A substantial number of men with isolated CBAVD are carriers of the most common CFTR mutation, F508del, of which an estimated 1 in 30 Caucasian individuals are carriers (24, 26). However, men with CBAVD are able to father biological children by sperm extraction (PESA or MESA) followed by IVF with ICSI (24, 25, 26) In addition, there is an increased risk for CF in the offspring of men who have CFTR mutation(s), and thus, carrier screening their partner for CF and/or performing preimplantation genetic diagnosis (PGD) for CF on embryos created using their sperm are options reproductive medicine providers should discuss with these men before fertility treatments begin (25, 26). Consequently, men with infertility caused by CFTR mutation(s) can father healthy biological children through the use of certain ART fertility treatments and should therefore be offered genetic screening for CFTR mutations before any fertility treatment is attempted.
strongly associated with female infertility, such as BMP15, FSHR, LHCGR, and FMR1, have prognostic value and help guide the choice of the appropriate fertility treatment, increasing favorable patient and provider outcomes. Approximately 10% of women seeking fertility treatment have diminished ovarian reserve (DOR) which is defined as having a decreased number and quality of eggs (27). DOR is associated with infertility and poor ovarian response to controlled ovarian stimulation (COS) and is reported in 9-24% of IVF cycles (28-31). Women who have DOR have a decreased antral follicle count, low serum AMH and high FSH levels, high IVF cycle cancellation rates, and low pregnancy rates during IVF (29, 31). DOR is a feature of primary ovarian insufficiency (POI) which is a feature of primary ovarian insufficiency (POI) which affects approximately 1% of women worldwide and is the cause of infertility and sub-fertility in many women (27). Research has shown that several mutations in the BMP15 gene are associated with DOR/POI (28). The BMP15 gene is located on the short arm of the X chromosome (Xp), and is an oocyte-derived growth and differentiation factor that is a critical regulator of folliculogenesis and granulosa cell activities (28, 29). Variations in BMP15 gene dosage due to mutations within the gene have a significant influence on ovarian function and can account for several defects in female fertility (29, 30, 31). BMP15 is the first gene identified on the X chromosome whose dosage is critical for determination of ovarian reserve and age at menopause (27-31). Mutations in the BMP15 gene causing loss of function and decreased gene dosage are linked to ovarian defect and early menopause (27-31). The prevalence of BMP15 mutations in women with POI is 10 fold higher than the prevalence of BMP15 mutations in the general female population without infertility (28). Data suggest that women without mutation(s) in the BMP15 gene who have normal gene expression are more likely to be higher responders to COS and produce higher quality oocytes that have the highest chance of fertilization (28, 29, 30). In women with poor ovarian response, those with normal BMP15 gene function have also been shown to have increased implantation rate, clinical pregnancy rate and live birth rate during IVF cycles when compared with poor ovarian responders who have BMP15 mutations (29). Thus, BMP15 has prognostic value as a biomarker of IVF outcome and utility as a way of forewarning of a possible poor pregnancy outcome affording patients and providers the knowledge to change to other more appropriate treatments and avoid the cost and time expense of failed IVF cycles. In addition, by way of genetic screening for BMP15 mutation status in their female patients, providers will be better prepared to overcome the long-standing challenge of determining the probability of pregnancy among those women who are poor ovarian responders (29). Consequently, pre-IVF genetic screening for BMP15 mutations is of significant prognostic value to reproductive medicine providers in determining the outcome of COS and IVF cycles in women seeking fertility treatments.

Greater than 250,000 cycles of gonadotropin stimulation are performed annually worldwide for IVF, and approximately ¼ of human embryos created by ART fertility treatments such as IVF with ICSI fail to produce live births following uterine transfer (33, 34). Hence, there has been increasing interest in identifying pre-treatment factors that may indicate the likelihood of success with fertility treatments (32, 33, 34). Consequently, recent studies suggest pre-IVF genetic screening of females with infertility for mutations in the FSHR and LHCGR genes may provide such insight (32, 33) The heritability of reproductive ageing in women is estimated to be as high as 90%, and genetic mutations in both FSHR and LHCGR have been found to play a critical role (32, 33). FSHR gene mutations can affect early antral follicle count and follicle numbers obtained during ovarian stimulation (32). Certain mutations in the FSHR gene have been shown to affect ovarian response to gonadotropin treatment used during IVF cycles causing some women to require a higher exogenous dose of FSH prior to IVF than others (33). In addition, women with certain mutations in FSHR and LHCGR experience longer menstrual cycles, have a higher risk for severe ovarian hyperstimulation syndrome (OHSS), and have higher implantation rates after embryo transfer (IVF-ET) as well as higher rates of successful pregnancy after IVF (see Figure 2) (32, 33, 34). Thus, pre-IVF genetic screening of women for FSHR and LHCGR genetic mutations is of substantial clinical utility to reproductive medicine providers as biomarkers of reproductive ageing and ovarian reserve/function that can assist in the prediction of which pre-treatment IVF patients are at risk for OHSS, poor implantation, and have the best chance of IVF cycle success.

Premature ovarian ageing affects approximately 9% of all women, and up to 50% of women undergoing fertility treatment (36, 38, 40). It has been known for decades that premutation range mutations of the Fragile X Mental Retardation (FMR1) gene (CGGn 55-200) are associated with greatly increased female risk of primary ovarian insufficiency/premature ovarian failure (POI/POF) [also referred to as Fragile X associated primary ovarian insufficiency (FXPOI)] and subsequently reduced clinical pregnancy rates after IVF (36, 37, 38, 40). Approximately 1/130 to 1/250 women in the general population are Fragile X premutation carriers, and FMR1 premutations account for 4-6% of all cases of POI/POF (38, 39). Approximately 25% of women who have a Fragile X premutation will experience symptoms of FXPOI. FXPOI encompasses a continuum of severity in ovarian dysfunction: occult POI is associated with normal FSH levels and menses but reduced fertility, biochemical POI is associated with normal menses with elevated FSH levels and reduced fertility, and overt POI is associated with elevated FSH levels and irregular menses with drastically reduced fertility (35, 36, 37). Overt POI affects approximately 1/1000 women by age 30, and 1/100 women by age 40, and thus is of significant concern to women trying to conceive and the reproductive medicine specialists assisting them in this endeavor (38).

Recent concern for the effects on female fertility that CGG expansions in the FMR1 gene traditionally considered
to be in the “normal” range (CGGn<44) has emerged along with the proposition of a “new normal” FMR1 expansion range (CGGn26-34) (35, 36, 37). The suggestion of a “new normal” FMR1 CGG expansion range is derived from recent research studies demonstrating that CGG expansions less than 26 or greater than 34 are correlated (most strongly correlated with CGGn<26) with an accelerated loss of functional ovarian reserve (FOR) irrespective of age, as well as reduced embryo morphology, quality, and successful IVF pregnancy rates (35-39). If not completed as part of the pre-IVF initial evaluation of the female infertility patient, FMR1 trinucleotide expansion analysis should be a consideration following a failed treatment cycle where oocyte quality is thought to be a contributing factor, or in the presence of a surprise finding of diminished ovarian reserve in a young patient (35, 36, 38). Due to the negative effect on embryo quality and subsequent decrease in successful pregnancy rates following IVF associated with FMR1 CGG expansions outside the 26-34 range; FMR1 expansion analysis should also be performed on oocyte donor candidates as a tool of primary selection to optimize IVF cycle success in donor recipients (35,36). Consequently, considering the significant contributory role FMR1 CGG expansions play in female infertility, pre-IVF FMR1 trinucleotide expansion analysis should be offered to all women experiencing infertility to help better understand IVF cycle success chances and pursue better methods of using donor oocytes in cases where that would not be in the differential to save having a failed cycle.

Conclusion

The mapping of the human genome and subsequent development of multiple advanced genetic testing technologies has forever changed global healthcare delivery for the good. This is evidenced by use of precision medicine in the fields of oncology and cardiology having shown tremendous promise in recent years providing patients customized treatments based on their unique genetic profile and improving medical outcomes while affording significant cost and time savings to patients and healthcare providers alike (cancer, cardio). This transition from approaching medical management of human disease from a reactive position to that of a proactive one facilitated by the use of prognostic genetic testing is a significant advancement in the global practice of medicine, and one which is poised to revolutionize the practice of assisted reproductive technology (ART). Hence, through the implementation of pre-IVF genetic screening for both male and female chromosomal and single gene causes of infertility, as assessed by the EvolveGene fertility screens, patients and reproductive medicine providers will benefit from the cost/time savings and increased IVF success rates afforded by employing genetic based fertility treatment planning. It is important that all couples undergoing infertility treatment be informed of the risks, benefits, and possible outcomes of treatment through the use of pre-IVF genetic screening ordered by their reproductive medicine provider during the initial patient evaluation. Consequently, the dawn of pre-IVF genetic fertility screening is upon us, and by harnessing the predictive power of this testing, reproductive medicine specialists will be positioned to make significant contributions to improving IVF outcomes for both their patients and their practices for years to come.

References

Is there a small RNA fingerprint of embryo quality and health in spent IVF media?

by Allison Tscherner, Leanne Stalker and Jonathan LaMarre
Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, CANADA

You can contact Jonathan LaMarre at jlamarre@uoguelph.ca

ABSTRACT: With improved technologies and enhanced understanding of cellular pathways that influence the success or failure of IVF procedures, there is an increasing demand for techniques to rapidly and non-invasively assess the health and developmental competence of individual embryos in clinical settings. These demands are further fueled by increasing age in those seeking ART to fulfill their reproductive aspirations (where the risk of embryo loss and genetic abnormalities is higher) and increasing demands by healthcare funders and regulators to perform single-embryo transfer in order to minimize potential complications associated with multiple gestation pregnancies. Promising strategies are emerging in which nucleic acids such as small regulatory RNAs secreted into the culture medium are measured to identify patterns and relative concentrations that may be related to the overall health and potential of those embryos to establish successful pregnancies leading to healthy children. This review describes some basic characteristics of one class of small RNAs known as microRNAs (miRNAs) and explores their potential as in-vitro biomarkers that reflect embryo quality and health.

Widespread societal changes have dramatically increased the demand for assisted reproductive technologies (ART), including in-vitro fertilization (IVF), as people frequently defer their reproductive ambitions until their period of optimal fertility has passed. Improvements in IVF, embryo culture and cryopreservation over the past decade have increased embryo implantation and cumulative pregnancy rates. This has, however, often been associated with concomitant increases in multiple gestation pregnancies (MGP) and their attendant complications. As a result, many government and private insurance programs have established funding strategies for IVF that are contingent upon the use of elective single embryo transfer (eSET) to avoid the health care costs and patient-related health risks associated with MGP. With this recent movement of IVF towards eSET, it has become increasingly important to develop strategies that evaluate both implantation potential and individual embryo quality in order to select the embryo that is most likely to result in a successful pregnancy and healthy child. Rapid, accurate and reliable techniques for optimizing embryo selection prior to transfer clearly have the potential to streamline IVF, increase efficiency, safely increase overall pregnancy success, and contribute to the long-term health of the children born from these procedures.

Current evaluation strategies that are routinely employed to determine the potential for pregnancy success with individual embryos are based primarily on the morphological characteristics of embryos or oocytes (Adamson et al., 2015). While these techniques are increasing in precision, ease and frequency of use, morphological assessments cannot universally identify the characteristics most strongly associated with either implantation or developmental potential, although they still hold considerable promise. Morphological evaluation is often paired with Preimplantation Genetic Screening (PGS) and/or Preimplantation Genetic Diagnosis (PGD), techniques by which trophectoderm lineage cells are biopsied from the blastocyst stage embryo and subjected to chromosomal or genetic analysis (Dahdouh et al., 2015, Palini et al., 2015). However, this technique entails some risk to the developing embryo, and, although it yields an accurate picture of the genetic and chromosomal status of the tested cells, it may not provide an accurate picture of the genetic and chromosomal status of the embryo as a whole, nor may it reflect overall embryo health and potential (Dahdouh et al., 2015, Cimadomo et al., 2016). Therefore, there remains considerable need for a diagnostic platform that could be paired with PGS/PGD, and by which embryo quality and developmental potential could be assessed prior to eSET. There are currently no routine biomarkers or comparable diagnostic indicators that can be used efficiently and non-invasively to determine the developmental potential and subsequent health status of an IVF embryo, or to identify those with the optimal potential from larger groups, leaving a considerable knowledge and practice gap in the IVF field.

In the preimplantation period, the embryo relies on diffusion and direct uptake for the exchange of gases and intake of metabolic substrates required for energy. As it continues to undergo the regular cell divisions necessary for early embryonic development, the breakdown...
products (metabolites) of these substrates, as well as secreted proteins and nucleic acids, are released into the surrounding environment. For embryos cultured in vitro, these secreted products may reflect different aspects of the internal characteristics and potential quality of the embryo (Perkel et al., 2015). If changes can be detected and compared, there exists substantial potential for the development of a minimally-invasive diagnostic tool, in which the spent culture media is analyzed. This concept is not novel, however, the range of target molecules and our ability to detect and characterize them accurately from very small amounts of starting material has improved substantially over the past decade and continues to grow, further increasing the potential for the development of novel technologies.

The three major classes of molecules (recently reviewed by Rødgaard et al., 2015 in human IVF and Perkel et al., 2015 in domestic animals) with potential for non-invasive in vitro diagnostics are 1) the secretome: proteins secreted by the embryo that reflect the internal proteomic signature, 2) the metabolome: waste products of energy consumption, and 3) microRNAs: short strands of RNA released into media with a carrier protein, or packaged in small vesicles known as exosomes. The protein secretome and the metabolome were the first to be investigated as potential biomarkers, but the processing time, cost, and specialized equipment required to perform the relevant assays has significantly impeded their use in routine clinical settings. Most recently, studies have begun to examine the potential of small regulatory nucleic acids called microRNAs as specific biomarkers for the prediction of implantation success (Reviewed in: Traver et al., 2014).

MicroRNAs (miRNAs) are a class of short (~22 nucleotides), abundant, non-coding RNAs with numerous regulatory roles in development, including proliferation, developmental timing, cell fate determination, and apoptosis (Ambros, 2004). Their sequences are highly conserved among mammals and have been detected in the gametes and embryos of many species including humans (Krawetz et al., 2011, Assou et al., 2013, Rosenbluth et al., 2013, McCullie et al., 2010). These single-stranded ribonucleic acids regulate gene expression by binding imperfectly to messenger RNA targets with complementary sequences and initiate mRNA destabilization or translational repression (Bartel, 2004). Estimates for the percentage of genes regulated by miRNAs have grown rapidly from 30% in 2005 (Lewis et al., 2005) to more than 60% of coding genes by 2014 (Cech et al., 2014).

MiRNAs are ubiquitously expressed in mammalian cells and tissues, and abnormal increases or decreases in their expression play well-established roles in many diseases. Several types of cancer present distinct miRNA “signatures” (reviewed in Garzon et al., 2009) which are potentially predicative of disease progression. miRNAs may also enter circulation, and serum/plasma miRNA profiles can be used to detect the associated disease states (Chen et al., 2008). The use of these circulating miRNA signatures as potential biomarkers has been investigated in many human pathologies including myocardial infarction (Ai et al., 2010, Wang et al., 2010) and liver disease (Arrese et al., 2015). As potent regulators of gene expression across a wide spectrum of cellular activities, their levels inside cells mediate profound effects on a wide range of cellular processes such as proliferation, apoptosis, and signalling. Importantly, in the context of ART, the presence and levels of miRNA in and around embryos is likely to provide a functionally relevant indicator of the “state of the embryo” from genetic, metabolic and developmental perspectives.

The evaluation of secreted miRNAs as non-invasive biomarkers of reproductive disease has recently become an intense focus of investigation, and miRNAs have been extensively profiled in many bodily fluids including amniotic and follicular fluids (Weber et al., 2010, Sang et al., 2013). Studies have demonstrated that secreted miRNAs have strong potential as useful prognostic metrics in clinical IVF settings: Rosenbluth et al. (2013) analyzed the miRNA content of human blastocysts and observed differential expression of several miRNAs between euploid and aneuploid embryos. A subsequent study by the same group revealed that some of these miRNAs are present in spent embryo culture media, and that specific miRNAs are associated with chromosomal status and pregnancy outcomes. In particular, high miR-191 expression in the culture medium is associated with aneuploidy, and high miR-372 in conjunction with miR-191 correlates with implantation failure when compared to medium from embryos that resulted in live births (Rosenbluth et al., 2014). These early findings suggest that miRNA abundance in culture media may be a highly relevant indicator of chromosomal content and implantation potential. Interestingly, miR-372 is one of the most abundant miRNAs present within euploid blastocysts (Rosenbluth et al., 2013). Taken together, the observations that miR-372 is abundant inside the blastocyst and is significantly more abundant in the spent medium of failed embryos raises interesting questions concerning whether the secretion of embryonic miRNAs into surrounding culture medium may be indicative of compromised embryo competency.

The presence of numerous specific, stable and detectable molecules secreted by embryos into their culture medium underlies the high potential utility of these molecules as non-invasive biomarkers of embryo quality. MiRNAs that specifically correlate with chromosomal status and developmental competence may represent useful adjunct diagnostic parameters for PGS, as well as novel targets in prognostic tests for overall embryo health and implantation potential. Research has demonstrated their resistance to degradation in the presence of changes in pH and after multiple (10+) freeze-thaw cycles (Chen et al., 2008, Mitchell et al., 2008), which helps offset concerns with respect to sample integrity in clinical settings, where storage and shipping may be necessary. Furthermore, miRNAs detected in circulation and other bodily fluids appear to be protected from degradation by several mechanisms: they are stabilized by binding to carrier proteins such as lipoproteins (Vickers et al., 2011), argonaute proteins that form the RNA-induced silencing complex (Turchinovich et al., 2011), or become
packaged into small vesicles known as exosomes that allow miRNA molecules to move through the extracellular milieu into recipient cells (Valadi et al., 2007).

The growing body of evidence described above strongly supports the potential use of miRNAs as promising non-invasive predictors of overall embryo health. Unlike secreted proteins and metabolites, miRNAs can be easily amplified and detected, suggesting that they can be readily assayed in small volumes of embryo culture medium. They are easily quantified by reverse-transcription polymerase chain reaction (q-RT-PCR), a method that is generally simpler and more cost-effective than the techniques required for detecting metabolites. Furthermore, these techniques can be readily employed either in-clinic by trained personnel or at medical diagnostic laboratories that routinely apply similar technologies to other medical problems. The intense research focus on miRNAs from functional and diagnostic perspectives, particularly in reproduction and development, strongly suggests that more miRNAs with additional diagnostic utility are likely to be identified in the future. In order to develop biomarker-based approaches to fertility problems, it will be essential to more definitively characterize the complex small RNA profiles that accompany embryos with robust health and developmental potential, compared to those with less favourable outcomes. Finally, because of their dynamic involvement in developing embryos, when multiple miRNAs are examined simultaneously in spent media, the profile or “fingerprint” that emerges may provide a more comprehensive picture of the many different elements that comprise overall embryo health.

Acknowledgements

The authors wish to thank Mike Neal, Monica Mezezi, Stewart Russell, Luis Gaitero, Terra Hillis, Moez Ahmed, and Graham Gilchrist for helpful discussions. Studies in the LaMarre laboratory are supported by the Natural Sciences and Engineering Council (Canada) and the Ontario Ministry of Agriculture, Food and Rural Affairs. JL is a paid consultant for LifeGlobal/EvolveGene.

References

Evolve Female Fertility Screen

The most advanced and comprehensive Female genetic fertility screen

Bringing a New Perspective to infertility care

The Evolve Female Fertility Screen detects the most common genetic causes of female infertility through in depth and advanced CHROMOSOMAL AND MUTATION ANALYSIS.

Mutation Analysis of 6 Genes most strongly associated with female infertility:
- FSHR
- LHCGR
- BMP15
- LHB
- ZP1
- FMR1 (Fragile X)

(Repeat length analysis to detect for FMR1 premutation, the most common genetic cause of premature ovarian failure)

Chromosome Analysis:
- Chromosome Rearrangements
 (Detects genetic abnormalities that can lead to miscarriages)
- Mosaicism
 (Examining for abnormal cell lines)
- Sex Chromosome Disorders
 (For example, Turner Syndrome)

As many as 1 in 10 women with infertility will have a contributing genetic anomaly

* Professional medical societies including the American Congress of Obstetricians and Gynecologists (ACOG) and the American Society for Reproductive Medicine (ASRM) recommend females with infertility have genetic screening.
An Overview of the Effects of Age on Fertility in Women

by Don Rieger, PhD
Vice President, Research and Development, LifeGlobal, LLC

You can contact Don Rieger at DonRieger@LifeGlobal.com

Reprinted from Fertility Magazine Volume 4, October, 2007

I. INTRODUCTION

For a variety of social and economic reasons, women (and couples) are putting off having babies until they are in their mid-thirties, or later. As shown in Figure 1, this trend is common to most industrialized countries. In the United States, the average maternal age at first birth increased from 21.4 to 24.9 years of age from 1970 to 2000. Overall, birth rates in the United States decreased from 1970 to 1980, but since then, the birth rates for women over 30 years of age have increased significantly (Figure 2).

Although some women can, and do, have babies into their forties and even fifties, in general, fertility decreases markedly with a woman’s age, particularly from 35 years onward. As shown in Figure 3, the chance of being infertile is approximately twice as great for women 40-44, compared with women 30-34. It is important to note that the onset of age-related infertility occurs approximately 10 years before menopause (te Velde and Pearson, 2002). The decrease of fertility with age, coupled with the tendency toward later child-bearing has led to the suggestion that “female ageing … is now the main limiting factor in the treatment of infertility” (Ford et al. 2000).

This paper is intended as an overview of the information available on the relationships between age and fertility in women. It is by no means an extensive review of the literature, but rather, the data have been selected to illustrate general principles. Moreover, it is becoming increasingly evident that the fertility of a couple decreases with age of the male, as has been recently reviewed by Fisch (2005). The effect of male age is beyond the scope of this paper, but where relevant and whenever possible, studies have been chosen that have been controlled or adjusted for male age as well as frequency of intercourse and lifestyle factors.
II. THE EFFECT OF AGE ON NATURAL CONCEPTION

The birth of a normal healthy baby requires that a woman be able to ovulate a mature, normal oocyte (egg) at the appropriate time, that a fertile sperm be present within the oviduct (Fallopian tube) for fertilization, that the oviduct and uterus be capable of supporting the development of the embryo, and that the embryo (later the fetus) reside in uterus until fully developed and delivered without major complications. Many of these processes have been shown to be affected by the woman’s age.

The development of the oocytes and the follicles in which they reside begins when the woman is herself a fetus. Primordial germ cells develop into oogonia which divide and differentiate into primary oocytes. The primary oocytes are enclosed in a single layer of granulosa cells to form primordial follicles, numbering approximately 7,000,000 in both ovaries at 4-5 months of gestation. From there onward, the oogonia stop dividing, and the primary oocytes are arrested in development until puberty. Most of the primordial follicles are lost to atresia such that only approximately 1,000,000 are left at birth, 40,000 at the time of puberty and 1,000 at menopause. Throughout reproductive life, groups of the primordial follicles spontaneously grow and develop into early antral follicles. Most of these are also lost, except for (usually) one follicle per menstrual cycle that continues to develop into a large antral (dominant) follicle in response to gonadotrophic hormones (FSH and LH) secreted by the anterior pituitary gland. A surge of LH at mid-cycle induces the final maturation of the oocyte in the dominant follicle and its release (ovulation) into the oviduct where it can be fertilized. (See Piñón, 2002)

The ability to produce and ovulate that one oocyte is directly related to the number of antral follicles on the ovaries at that time. As shown in Figure 4, the number of antral follicles present on the ovaries declines with age.

In addition to the significant decline in the number of antral follicles, increasing age is also associated with chromosomal and functional aberrations in the oocytes. Most notably, as shown in Figure 5, the frequency of aneuploidy (abnormal numbers of chromosomes) in human oocytes increases exponentially after 35 years of age. Although the sperm can also contribute to chromosomal defects in the embryo, defects in the aged oocyte are thought to be the major cause of Downs Syndrome and other chromosomal abnormalities in newborns (Figure 6). Increased maternal age is also associated defects in oocyte mitochondria, a structure responsible for energy production and many other important functions. These include an increased rate of point mutations in oocyte mitochondrial DNA (Barritt et al. 2000), and with a decreased ability of the mitochondria to produce energy (Wilding et al. 2002).

As discussed in the following section on assisted reproduction, there is evidence that maternal age can have effects on fertilization and on development of the embryo. In natural conception, it is difficult to be certain whether problems of fertility arise from deficiencies in the embryo or deficiencies in the reproductive tract. However, it is very clear that the ability to get pregnant, to maintain the
pregnancy, and to deliver a healthy baby decreases with maternal age.

Figure 7 shows that the probability of establishing a clinical pregnancy following intercourse on the most fertile day of the cycle decreases steadily with increasing maternal age. Even for women who do eventually become pregnant, the likelihood of achieving conception within six months is dramatically reduced for women 35 years of age and older (Figure 8).

When pregnancy is established, increasing maternal age has severely detrimental effects on the outcome. Many of these effects probably result from the effects of maternal age on the oocyte/embryo/fetus or the embryonic contribution to the placenta. Both the miscarriage rate (Figure 9) and the frequency of preterm delivery (Figure 10) increase with increased maternal age. The risks of a wide variety of perinatal complications in the mother and the baby are significantly greater in women older than 35 years of age compared with women from 18-34 years of age (Figure 11). For example, compared with women 18-34 years old, the risk of an emergency Caesarian section was 1.5 times as great for women 35-40 years old and more than twice as great for women older than 40. Based on historic data and on animal studies, Tarin et al. (2005) have suggested that delayed motherhood may also have long-term effects on the health of the children, including impaired fertility and reduced lifespan.
ARTICLES

III. THE EFFECT OF AGE ON THE SUCCESS OF ASSISTED REPRODUCTION

Infertility can result from lack of ovulation, poor quality oocytes, blocked oviducts (Fallopian tubes), impotence in the man, inadequate sperm numbers, poor quality sperm, or a poor interaction between the sperm and the cervical mucus. Many of these problems (and infertility due to unknown causes) can be treated, or at least circumvented, by assisted reproductive technologies (ART). However, although ART procedures can improve the chances of having a baby, the success rate decreases markedly with increasing age of the woman.

1. Intrauterine Insemination and Donor Insemination

Intrauterine insemination (IUI) is the simplest form of ART. Semen is collected from the male partner by masturbation and then the sperm are usually washed to remove dead cells and other possible deleterious components of the seminal plasma. The washed sperm are then placed directly into the uterus via a catheter which has been passed through the cervix. This serves to avoid any problems of passage of sperm through the cervix or cervical mucus, and provides a greater number of sperm within the uterus to increase the chances of fertilization. Intrauterine insemination is also commonly used in conjunction with ovulation induction, in order to ensure optimal timing of insemination.

Figure 12 shows that the age of the man can have a significant effect on the clinical pregnancy rate following IUI, but for any given age of the man, the clinical pregnancy rate decreases markedly with increasing age of the woman. Similarly, the pregnancy rate resulting from IUI with sperm from fertile donors is also significantly reduced with increasing age of the woman (Figure 13).

Figure 13. The effect of maternal age on clinical pregnancy rate following intrauterine insemination with frozen donor sperm (Ferrara et al. 2002).

2. In-Vitro Fertilization

In-vitro fertilization (IVF) was originally developed to overcome the problem of blocked oviducts but is now also used to treat male-factor infertility (low numbers or quality of sperm) and infertility for which there is no apparent cause. In general, the woman is treated with gonadotrophins to increase the number of antral follicles that fully develop. It is important to note that gonadotrophin treatment has no effect on the numbers of primordial follicles that develop to the antral stage – it only acts to rescue the follicles that have already developed to the antral stage and would normally be lost to atresia. When the follicles have reached the appropriate size, the woman is given human chorionic gonadotrophin to mimic the normal ovulatory LH surge, and induce final oocyte maturation. A needle is used to recover the oocytes from the mature antral follicles. For standard IVF, the oocytes are placed together with sperm from the partner or a donor and the sperm penetrate the oocyte naturally. In cases where only small numbers or immotile sperm are available, fertilization can be achieved by injection of a single sperm into each oocyte (ICSI). After fertilization, the resultant embryos are cultured for 2 to 6 days and then transferred back into the uterus of the woman.

As shown in Figure 4, the number of antral follicles present on a woman’s ovaries decreases with age and this results in a decreased number of oocytes that can be retrieved for following gonadotrophin treatment for IVF (Figure 14a). Moreover, the quality of the oocytes also decreases with increasing age (Figure 14b), resulting in a decreasing proportion of the oocytes that can be successfully fertilized in vitro (Figure 14c).

Embryo development in culture is also affected by the age of the woman. In the example shown in Figure 15,
Figure 14. The effect of a woman’s age on a) the number of oocytes retrieved, b) chromatid separation rate of the oocytes, and c) in-vitro fertilization rate (Lim and Tsakok 1997).

The proportion of fertilized oocytes that developed to the blastocyst stage by Day 5 was significantly reduced with increasing age of the woman.

Figure 15. The effect of a woman’s age on the development of fertilized oocytes to the blastocyst stage by Day 5 of culture (Wiemer et al. 2002).

The effects of age of the woman on the outcome of ART using her own oocytes are strikingly demonstrated by the statistics for ART procedures for 2002 reported to the U.S. Centers for Disease Control (U.S. Department of Health and Human Services – Centers for Disease Control and Prevention 2004) that are shown in Figure 16. The data include a total of 81,888 treatment cycles which resulted in approximately 24,100 live births.

First, as shown in Figure 16a, the cancellation rate (treatment cycles in which no embryos were created or none were suitable for transfer) more than doubled for women 41-42 years old compared with women younger than 35. This reflects the decrease in the numbers and quality of oocytes retrieved with increasing age. For cycles in which embryos were produced, the proportion of those embryos that developed to the fetal stage (the implantation rate) decreased from 28% in women less than 35 years old to only 8% in women 41-42 (Figure 16b). Of the embryos that did implant, 38% were subsequently lost (miscarried) in women 41-42 years old, compared with only 14% in women younger than 35 (Figure 16b).

Overall the reduced implantation rate and increased fetal loss rate in older women resulted in only 5% of embryos transferred developing to a live baby in women 41-42 years old compared with 23% in women younger than 35 (Figure 16d). For women 41-42 years old, only 11% of cycles started yielded a live birth compared with 37% for women younger than 35 (Figure 16e). This would mean that on average, a woman 41-42 years old would need 12 IVF treatment cycles to have a 75% chance of one live birth, compared with only 3 treatment cycles for a woman younger than 35.

In addition to the decrease in live-birth rate with increasing age, pregnancies and babies resulting from ART in older women using their own oocytes are subject to the same problems of pre-term delivery, perinatal complications and chromosomal abnormalities seen with natural conception.

3. The Use of Donor Oocytes

In cases where a woman has no ovaries or is otherwise unable to produce her own viable oocytes, oocytes may be obtained from other women. The donors are most often anonymous fertile, young women but may be a relative or friend of the patient. The donor is treated with gonadotrophins and oocytes collected as described in the preceding section. Sperm from the patient’s male partner is usually used for fertilization and the resulting embryos cultured and then transferred into the patient. Interestingly, it appears that the patient’s age has no appreciable effect on the ability to support a pregnancy. The live-birth rate for women receiving embryos created from donor oocytes is approximately 50% at all ages from 25 to 45 (U.S. Department of Health and Human Services – Centers for Disease Control and Prevention 2004). Of course, the babies born from donated oocytes have no direct genetic relationship to the patient.

Clearly, common ART procedures can improve the chances of pregnancy but cannot overcome the deleterious effects of aging on numbers and quality of the oocytes. Based on a computer model, Leridon (2004) has calculated that ART can make up for only half of the births lost by postponing an attempt to become pregnant from 30 to 35 years, and less than 30% of the births lost by postponing from 35 to 40 years. Based on a literature review and their own data, Broekmans and Klinkert (2004) conclude that the prognosis for a successful pregnancy with IUI or IVF for women 44 or older “is flat zero.”

There are, however, two specialized ART procedures, pre-implantation genetic diagnosis and oocyte cryopreservation, that can, or have the potential to, circumvent the effects of aging on fertility.
IV. APPROACHES TO CIRCUMVENTING THE EFFECT OF AGE ON FERTILITY

1. Pre-Implantation Genetic Diagnosis

As noted above, the frequency of chromosomal abnormalities in oocytes increases with age in women, and this results in increased frequencies of chromosomal abnormalities in the embryos, fetuses, and babies born. An early approach to this was to obtain cells from the fetus by amniocentesis or chorionic villus sampling for evaluation of the chromosomes. Fetuses with abnormal numbers of chromosomes were then aborted, in order to prevent the birth of chromosomally abnormal babies. More recently, it has become possible to determine the chromosome status of early embryos produced by ART, before they are transferred back into the patient (preimplantation genetic diagnosis, PGD). In this case, only embryos with normal chromosome numbers are transferred.

A positive side effect of embryo selection following PGD is that the implantation and birth rates are increased because chromosomally abnormal embryos are often also developmentally compromised. An example is shown in Figure 17, where the implantation rate for embryos that had been tested and judged to chromosomally normal was 17.6% compared with 10.6% for embryos that had not been tested (and presumed to be a mixture of normal and abnormal embryos). Pre-implantation genetic diagnosis is usually used for couples with some history of chromosomal or other genetic defects, recurrent miscarriage, or in older women. Based on the improved rates of development following PGD, it has been suggested that all embryos should be tested.

Figure 16. The effect of a woman's age on the a) cancellation rate, b) implantation rate, c) fetal loss, d) approximate babies born per embryo transferred, and e) live birth rate with in-vitro fertilization of non-donor oocytes in the United States in 2002. (Taken or derived from: U.S. Department of Health and Human Services – Centers for Disease Control and Prevention 2004).

Figure 17. Implantation rates for unselected embryos and for embryos judged as chromosomally normal by pre-implantation genetic diagnosis (Munné et al. 2003).

2. Oocyte Cryopreservation

When living tissues are deep-frozen (cryopreserved) under the appropriate conditions, all biological processes are arrested and aging of the tissue stops until it is thawed. This approach has been long used for the storage of sperm and embryos, and has recently been extended to oocytes. A major interest in oocyte cryopreservation is to preserve the possibility of fertility for young women that are due to
undergo radiotherapy and chemotherapy for the treatment of cancer. Such treatments can have severely deleterious effects on the oocytes. By removing and freezing the oocytes, they are not exposed to the cancer treatments. After the patient has recovered from the cancer treatments and wants to start a family, the oocytes can be thawed and fertilized, and the embryos transferred back into her uterus.

In the same way that cryopreservation can protect oocytes from cancer treatments, it could also be used to protect oocytes from natural loss and degeneration due to aging. Stachecki and Cohen (2004) have suggested that this may offer an approach to preserving fertility for women wishing to delay reproduction. Oocytes would be collected from young women and then cryopreserved until they are ready to begin their families. Although as yet largely experimental, the pregnancy rates from cryopreserved oocytes are improving.

V. CONCLUSIONS

There is a tendency for women in industrialized countries to delay having babies until their mid-thirties or later. There are important social and economic reasons for doing so, but it is imperative that women be aware that fertility decreases significantly with age, particularly after 35 years of age. From a purely biological perspective, the best approach to ensuring fertility is for women to have their babies before they have reached their mid-thirties, but for many women, this is not a desirable or even practical option. At any given age, assisted reproduction techniques may improve the chances of becoming pregnant, but cannot make up for the loss of fertility due to the effects of aging on the numbers and quality of oocytes.

References

The Evolve Male Fertility Screen detects the major genetic causes of male infertility through the most in depth and advanced CHROMOSOMAL AND MUTATION ANALYSIS.

Mutation Analysis of 5 Genes most strongly associated with male infertility

<table>
<thead>
<tr>
<th>Gene</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR, CATSPER1, FSHR, LHCG</td>
<td>(Targeted Screening for the 39 most common pan-ethnic CFTR mutations.)</td>
</tr>
<tr>
<td>CFTR</td>
<td></td>
</tr>
</tbody>
</table>

Chromosome Analysis

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y Microdeletions</td>
<td>(accounts for 15% of all male infertility)</td>
</tr>
<tr>
<td>Mosaicism</td>
<td>(accounts for 5-10% of all male infertility)</td>
</tr>
<tr>
<td>Sex Chromosome Disorders</td>
<td>(For example, Klinefelter Syndrome)</td>
</tr>
</tbody>
</table>

As many as 1 in 5 men with infertility will have a contributing genetic anomaly. Many of these cases are unknowingly due to genetic abnormalities.

* Professional medical societies including the American Urological Association (AUA) and the American Society for Reproductive Medicine (ASRM) recommend males with infertility have genetic screening.
Exploring Our Evolving Genetic World: How Genetic Screening Provides A New Era in Patient Care

by Rosalie Ferrari, BSc, MSc, ACS
Genetic Counseling Coordinator, EvolveGene, LLC
You can contact Rosalie Ferrari at Rose@EvolveGene.com

Introduction

In the last 15 years, the field of genetics has advanced rapidly and garnered new insights that have revolutionized medical practice. The advent of new genetic testing technologies has afforded patients more options in the delivery of personalized medicine. Reproductive medicine may benefit most from these advancements by offering patients a unique opportunity to understand their risk of genetic disease for themselves and their families and plan for the healthiest families for the future.

Genetic testing is becoming necessary in routine medical practice. More than 2,000 genetic tests are available not only to detect well defined genetic conditions but also to identify genes and genetic factors that contribute to complex, common diseases (12, 20, 35). Genetic testing can be carried out through a variety of methods, enhancing its clinical utility. Genetic testing can be done on tissue or tumor samples; or more commonly, genetic samples are obtained through blood and saliva samples, which provide enough DNA to determine an individual’s genotype (11). This method is used to determine the carrier status of an individual during genetic screening.

Accessibility to genetic testing has never been greater, particularly after the first draft of the Human Genome Project was reported in 2001 (12, 22, 32). The Human Genome Project was a large-scale global effort to interpret the human genome sequence and identify the locations of human genes (2, 18, 31). The Human Genome Project was quickly followed by the ENCODE (Encyclopedia of DNA Elements) Project which provided an integrated analysis into the functional organization and regulatory elements in the genome (18, 29). These projects have led to the expansion of genetic techniques, including genome-wide association studies and next-generation sequencing, that delve deeper into genetic variants affecting disease and risk for disease (22, 26, 32, 38, 39).

Recapping Key Concepts in Genetics

Genetics is characterized by the concept of variation. Variation refers to the genetic differences that distinguish individuals. Phenotypic variability refers to whether an individual has evident features from an underlying genotype (i.e. the penetrance) and the degree of affectedness (i.e. the expressivity) (21, 25). Beyond variability, there is a distinction that needs to be made between the three main categories of genetic disorders detected through genetic testing: single gene, chromosomal, and complex diseases (31, 36).

Single gene disorders are caused by mutations in a single gene. These disorders can be inherited by autosomal recessive or autosomal dominant patterns, or through X-linked inheritance (See Figures 1-3). An individual’s risk to pass on a genetic disorder differs depending on the inheritance pattern for the particular disorder. Chromosomal disorders are caused by deletions or duplications of chromosomes or regions of chromosomes. The most common chromosomal disorder is caused by an extra copy of chromosome 21, known more commonly as Down syndrome. Complex disorders are caused not only by genetic factors but also environmental factors. Complex disorders are more frequently seen in the general population and include diseases such as Alzheimer’s disease and cancer. Although chromosomal disorders typically occur spontaneously and across any population, single gene disorders as well as complex disorders can occur in higher frequencies depending on the population (34).

Approaches to Genetic Screening

Human evolutionary genetics unveils the history behind genetic diversity within the human population. Genetic sequences illustrate the migration patterns of humans during history and continue to dictate how certain populations are at increased risk for particular genetic disorders (34). In modern, practical health terms, a patient may have an increased risk for genetic conditions based on their ethnicity. For example, Tay-Sachs disease is a severe, progressive, and fatal metabolic genetic disorder that is rare in the general population but genetic mutations that cause it are more common amongst the Ashkenazi Jewish population (17, 18). Genetic screening for Tay-Sachs disease has resulted in many carriers being detected within this population and led to a decrease in the incidence of the disease (30).

Many genetic disorders can be screened for with genetic testing. Genetic screening identifies patients who may be at
Figure 1. Autosomal Recessive Inheritance (40). Generally, both parents are carriers for an autosomal recessive disease. There is a 25% chance offspring will be affected with an autosomal recessive disease and a 50% chance offspring will be carriers for an autosomal recessive disease.

Figure 2. Autosomal Dominant Inheritance (40). Generally, one parent is affected with an autosomal dominant disease by having a mutated or altered copy of a gene. There is a 50% chance offspring will also be affected with the autosomal dominant disorder.
risk for passing on a genetic condition or who may have a genetic condition. Screening benefits early treatment options (e.g., newborn screening), provides additional prevention measures (e.g., mammograms for breast cancer screening), or assists during reproductive decision making (5, 20, 28). Healthcare practitioners hold a special role working with patients to navigate the ever-evolving landscape of genetic screening services. Genetic screening is typically used on reproductive issues or when there is a strong family history of cancer. In the latter case, genetic screening can reveal an increased hereditary predisposition to cancer in a patient. This can affect management and, as mentioned previously, provide additional prevention measures (10).

All patients undergoing fertility treatments can benefit from determining their carrier status through genetic screening. A patient’s carrier status not only impacts a pregnancy but can also, at times, detect a genetic cause for infertility in the individual (3, 14). There are different times when genetic screening may be optimal for a patient. Patients could undergo genetic screening prior to a pregnancy to determine the risk of passing on a genetic condition. Patients could have genetic screening completed during a pregnancy to determine the risk a genetic condition was inherited. In fact, the American College of Obstetricians and Gynecologists (ACOG) recommend patients to have genetic screening, especially if an individual’s ethnicity places them at greater risk of being a carrier for a genetic condition. If patients are found to be carriers for genetic conditions, fertility clinics can offer patients preimplantation genetic screening.

Preimplantation genetic screening (PGS) is an alternative option for patients to improve the effectiveness of in vitro fertilization (IVF) by screening embryos for genetic conditions (11, 19, 23). It is estimated in the United States that 8% of IVF treatments involve PGS and the technique is quickly reemerging as an essential part of clinical practice (27). PGS significantly reduces the risks of transferring chromosomal abnormal embryos or embryos affected with a genetic disease (14, 27). PGS methods, such as blastocyst stage biopsy, are continuously being enhanced and employed using the safest techniques in order to diminish implantation failures (7).

PGS can be guided by knowing a patient’s genetic carrier status and eliminates the need for traditional prenatal diagnostic testing during a pregnancy. Prenatal diagnostic testing (i.e., amniocentesis and chorionic villus sampling) expose patients to a high risk of miscarriage and are often anxiety-producing procedures (7). Patients can benefit from determining their carrier statuses through genetic screening prior to utilizing PGS. PGS is expanding reproductive options for patients who are carriers for serious genetic conditions while improving the success of IVF procedures (6, 7).

Central to supporting informed decision-making, patients need to understand the risks and benefits involved in genetic testing (13, 22). Risks of genetic testing include incidental findings and the potential for further confirmatory diagnostic tests; for example if a pregnant woman has a positive genetic screen for Down syndrome, a diagnostic test (e.g., amniocentesis) would confirm a positive result (33). Genetic testing benefits patients by allowing them access to information that can transform
their personal, family, and reproductive health. Ensuring patients understand the benefits and risks involved with genetic testing is necessary for informed healthcare choices (1).

Results from genetic testing can be complex and it is imperative to have competent, reliable genetic specialists to interpret information for the patient. Often times, genetic counselors provide support and education while empowering patients during their decision-making processes (24). Genetic testing services which involve genetic counseling (e.g. Evolve’s Genetic Screens) confirm a steadfast commitment to providing patients with quality healthcare.

Case Samples

Case 1

A female, age 33, and her male partner, age 34, are pursuing fertility treatments at a local clinic. Both are Caucasian and do not have significant family histories for any genetic disorders. However, their ethnicities place them at an elevated risk for Cystic Fibrosis, which is more common amongst individuals of Caucasian ethnicities, with a carrier rate of approximately 1 in 25.

Cystic fibrosis is a single gene disorder, inherited in an autosomal recessive pattern, and affects many body systems primarily impacting digestive and respiratory functions. Although the disorder has seen advances in treatment, cystic fibrosis is typically fatal in adulthood.

A doctor recommends they consider genetic screening as part of their treatment due to their Caucasian ethnicities.

Results reveal both are carriers for cystic fibrosis. These individuals can consider more family planning options now that their carrier statuses have been disclosed. They may need additional fertility treatments to manage the CFTR mutation that has caused the male partner’s infertility. They may decide to pursue diagnostic testing during a pregnancy to determine if cystic fibrosis was inherited. They could also decide to pursue preimplantation genetic screening with IVF, to ensure cystic fibrosis is not a risk for a pregnancy.

Case 2

An African-American female, age 35, is considering IVF and makes an appointment at a fertility clinic. She mentions during the visit that her male partner, age 36, has sickle cell trait. Sickle cell trait is not a genetic disorder; sickle cell trait is a hemoglobin variant (HbS). There are many different forms of hemoglobin variants due to mutations of the HBB gene.

Sickle cell anemia is a genetic disorder that occurs when an individual inherits two copies of HbS variant. Sickle cell anemia causes characteristic sickle shaped red blood cells that can lead to painful vaso-occlusive crises. Life expectancy for individuals with Sickle Cell Anemia is lower than the general population. Sickle cell anemia is more common among individuals of African-American ethnicities, with a carrier rate of approximately 1 in 12.

A doctor recommends she undergo genetic screening to determine her sickle cell trait status.

Results reveal she is a carrier of a HbC variant. Although the risk of sickle cell anemia has decreased, the couple is at an increased risk to have a child with HbSC sickle cell disease. HbSC disease is generally less severe than sickle cell anemia; however, HbSC disease can still be clinically significant. These individuals can consider more family planning options now that their carrier statuses have been disclosed. If they opt to pursue preimplantation genetic screening with IVF, their carrier statuses can be used to guide the procedure.

Case 3

A female, age 34, and her male partner, age 37, have been trying to get pregnant for the previous 5 months. Neither have a family history of infertility but they want to assess whether there may be a genetic factor affecting their chances to conceive.

A doctor recommends they may benefit from genetic screening with male and female genetic fertility screens.

Results reveal, the female partner is a Fragile X FMR1 premutation carrier, with 89 CGG repeats discovered upon analysis. This result may explain why they are having trouble conceiving, as a significant portion of Fragile X FMR1 premutation carriers are at risk for premature ovarian failure and therefore may have to consider other reproductive options. Fragile X FMR1 premutation carriers are common in the general population with approximately 1 in 150 women being carriers.

Fragile X FMR1 premutation carriers are not only at risk for infertility but they are also at risk to pass on the genetic disorder Fragile X syndrome to their sons. Fragile X syndrome is the #1 cause of inherited intellectual disabilities. This couple can use their genetic fertility screening results to plan and discuss what preconception reproductive options including IVF with PGD may be available for their family planning needs.

Conclusion

Genetic screening affords patients a new and exciting avenue for personalized medicine. Emerging laboratories are offering genetic screening panels that increase accessibility to meet patient demands (4). Patients receiving reproductive assistance are bound to take full advantage of these clinically relevant and practically meaningful genetic screening choices. Although current genetic screening focuses on preventing or predicting the risk of disease through genetic screening, future applications will likely lead to remarkable advances in healthcare such as curing cancer (37). Maintaining that patients receive...
understandable results after genetic screening will preserve the value of the information and retain genetic screening as an invaluable part of comprehensive patient care for years to come.

References

40. NHS National Genetics and Genomics Education Centre (2013) <www.geneticseducation.nhs.uk>
The development of new sequencing and genotyping technologies has brought an ever-expanding menu of genetic tests into clinical practice over the past decade. The field of genetics has enabled healthcare providers to deliver a more personalized approach to patient care. There is no better application of personalized medicine than for the provision of reproductive care. From the pre-conception stage through to prenatal care, the field of genetics plays an important role in the evolving paradigms of healthcare options for prospective and expectant parents. The delivery of faster and more accurate information can help guide better decisions for the intended parents on their individual reproductive journey.

Non-invasive prenatal test (NIPT) is a method to screen for fetal chromosomal aneuploidies from maternal blood. It provides significantly better risk indication than traditional prenatal screens and poses no risk of miscarriage or fetal damage normally associated with invasive diagnostic procedures. With its high specificity and sensitivity for both high-risk and low-risk pregnancies [1,2], NIPT offers the greatest opportunity for reproductive autonomy by all women or parents.

Safer and More Reliable Aneuploidy Screening Strategies

It is important for prenatal care programs to have the capability to accurately identify women with high-risk pregnancies while allowing for timely monitoring and management strategies to be prescribed to best fit each clinical situation [3]. Current prenatal diagnosis for fetal aneuploidies typically relies on a mathematical risk assessment from first trimester screening, followed by the use of invasive diagnostic procedures to confirm fetal chromosome abnormalities in high-risk women. In general, first trimester screening options carry a detection rate of 75% - 96% and a false-positive rate of 5% -10% for Down syndrome [4 - 7]. Such high percentages of false-positives and false-negatives of these options can lead to a great deal of anxiety for the parents, and may result in many unnecessary invasive procedures, which carry a 1% - 2% risk of miscarriages [8]. Due, in large part, to these factors, the pursuit of safe and reliable strategies has, for the past decades, been the focus of many investigations and scientific inquiries. By reducing the need for multi-step screening and invasive procedures, non-invasive approaches can have a great impact on the delivery of optimized prenatal care.

The rapid development of NIPT for aneuploidy detection was made possible by two main technical advancements: the discovery of fetal DNA in maternal circulation and the development of Next-generation sequencing.

Cell-Free Fetal DNA (cffDNA)

The presence of fetal cells in maternal blood has been a well-recognized phenomenon since 1969 [9-12], leading to the possibility of using these cells for noninvasive approaches to identify fetal genetic abnormalities [13]. However, the scarcity of intact fetal cells in maternal blood makes it technically challenging to implement on a large scale, thus, preventing its use in routine clinical practice [14].

In 1997, Lo and colleagues demonstrated the presence of male fetal DNA freely circulating in maternal plasma and serum. This was the first concrete evidence that cell-free fetal DNA (cffDNA) from maternal circulation during pregnancy could be reliably detected [15]. The advantage of using cffDNA is its abundance and stability in maternal circulation [16-19], providing a much better alternative genetic source than amniocentesis or chorionic villus sampling for prenatal detection of chromosomal aneuploidies which, in turn, translates into a simpler and more cost-effective process for scale-up applications. The cffDNA obtained is also most suitable for pregnancy-specific testing since it is cleared from maternal circulation within hours after delivery, excluding the possibility of contamination from previous pregnancies [20, 21].

The source of cffDNA found in maternal circulation has been demonstrated to originate from trophoblast cells in the placenta, these cells undergo apoptosis events releasing DNA fragments into maternal circulation [17, 22 - 24]. The fetal DNA can be detected in maternal serum as early as 5 to 7 weeks gestational age and represents approximately 10% of the total cell-free DNA population circulating in maternal blood (ranges 3 - 19%) [25, 26].

Next-Generation Sequencing

The Human Genome Project has led to the development of massively parallel sequencing approaches, also known as Next-Generation Sequencing (NGS) [27-29]. Such technologies can perform millions of DNA sequencing reactions simultaneously in a single run, thus acquiring large-scale genomic data at unprecedented speed and relatively low cost. There are three main NGS-based
approaches to NIPT for aneuploidy: whole-genome analysis; targeted chromosome panels; and targeted single nucleotide polymorphisms (SNPs). All three approaches can analyze the full cell-free fetal DNA complement in maternal circulation without the need for fetal DNA isolation or fetal fraction enrichment techniques. Detection sensitivity and specificity are high for all common aneuploidies, irrespective of the sequencing approach or the bioinformatic algorithm used [1, 2, 30]. In general, the fetal and maternal DNA are sequenced simultaneously and analyzed using sophisticated bioinformatics software. Accurate counting of the sequenced fragments for specific chromosomes are then compiled and aneuploidy is indicated by either an increase or a decrease in the count when compared to the expected threshold [26, 31, 32]. For example, if the fetus has trisomy 21 (Down syndrome), the sequencing count for chromosome 21 will yield a higher count than expected from maternal plasma (Figure 1). With genome-based techniques offering higher sensitivity and clearer resolution, we can now achieve the long-sought goal of non-invasive methods of testing for aneuploidy that can be put into routine practice.

Limitations of NIPT

Although the sensitivity and specificity are far better than conventional screening options for the common aneuploidies, NIPT should still be regarded as a highly sensitive screening test, rather than a diagnostic one [6, 33-36]. There are documented cases of false-positives and even rarer cases of false-negatives in the literature [37, 38]. These false-positives have been attributed to several biological factors: confined placental mosaicism; cotwin demise (vanishing twin); maternal aneuploidy; or maternal malignancy [39-45]. Due to these potential factors, it is recommended that a positive NIPT result should be confirmed by invasive diagnostic procedures such as amniocentesis or karyotyping of cultured chorionic villi [6, 33-36].

In up to 5% of the cases, low fetal fraction can contribute to an inconclusive (no call) result [46, 47]. There are three main contributors to low fetal fraction: testing before 10 weeks of gestation; high maternal body mass index; and fetal aneuploidy [48, 49]. It has been estimated that 22% of cases which failed to obtain a result through NIPT were, in fact, aneuploid pregnancies [50]. In the event of a no-call result, it is recommended that patients should be counseled on the options of repeat NIPT or diagnostic testing, and be made aware that repeat NIPT may delay diagnosis of fetal aneuploidy which may also affect the management of time-sensitive reproductive decisions [36].

NIPT Facilitates Autonomous Reproductive Choices

Non-invasive prenatal testing of cell-free DNA for aneuploidy identification has been regarded as a revolution in prenatal testing practice. It is not surprising that NIPT has garnered much commercial interest in the field. Since its inception into clinical practice in Hong Kong in 2011, NIPT has quickly spread to more than 60 countries around the world and counting [51, 52]. The global NIPT market has been estimated to reach $3.62 billion (USD) by 2019 [53].
NIPT is quickly changing the traditional framework of prenatal screening and diagnosis. Its rapid integration into routine prenatal care is prompting major ethical concerns on the responsible implementation and process of informed decision-making [54]. While all professional societies recognize the significant benefits offered by NIPT, maximum potential can only be achieved by educating patient and healthcare professionals on its utility, benefits, and limitations [33–36]. It is their opinion that genetic counseling is paramount to ensuring informed decision-making and reproductive autonomy. Special emphasis has been placed on the importance of providing accurate information prior to testing, for the purpose of informed consent, and also to mentally prepare the patients on the implications of what the test results could mean for them.

ACOG and SMFM updates guidance on NIPT

On March 1, 2016, The American College of Obstetricians and Gynecologists (ACOG) and Society for Maternal-Fetal Medicine released a joint Practice Bulletin to provide updated information regarding the available screening test options for fetal aneuploidy. Cell-free DNA screening, or NIPT, have now been added to the list of screening options recommended. The new recommendations strongly encourage physicians to discuss and offer aneuploidy screening or diagnostic testing to all women early in pregnancy, regardless of maternal age or risk factors. Women who have achieved IVF pregnancies, with or without preimplantation genetic screening, can also benefit from these options. Such discussions should take place at the earliest opportunity (ideally at the first prenatal visit), and discussion should include the benefits, risks, and limitations of the available screening and/or diagnostic test options. All management decisions should fit within the scope of the patients’ clinical circumstances, values, and goals. [36]

Future of NIPT

NIPT using cell-free DNA screening for aneuploidy is bringing the most radical change seen in prenatal care over the past decades. We have already seen a dramatic decline in invasive testing in countries with the clinical uptake of NIPT [55], which is met with overwhelming approval from patients and healthcare professionals alike [56, 57]. As molecular techniques continue to improve, NIPT promises to deliver increased use at a lower cost. The range of conditions it can detect is expected to expand and is likely to include microdeletions, microduplications, and single-gene disorders. As we move toward safer and earlier prenatal diagnosis, the opportunity for therapeutic interventions and treatments will have a significant impact on the delivery of fetal medicine. It will be crucial to educate clinicians on how to guide their patients through the complicated decisions as testing options increase. Autonomous decision-making is certainly attainable when patients and front-line healthcare providers are fully engaged in understanding the complexity of testing and interpretation of results. Responsible implementation of NIPT can have a far-reaching impact on the delivery of optimized prenatal care, with the best possible outcome for both mother and baby.

References

Current perspectives of Preimplantation Genetic Testing

by Irene Miguel-Escalada, PhD - Marie Curie Postdoctoral Fellow

You can contact Irene Miguel-Escalada, PhD at i.miguel-escalada@imperial.ac.uk

In recent years, modern demographics and delayed motherhood have resulted in an increased use of assisted reproduction technologies as a method of conception. This has inevitably led to the improvement of existing in vitro fertilization (IVF) techniques, including extended in-vitro culture, blastocyst biopsy and the development of novel vitrification methods and time-lapse imaging systems. These advances, coupled with a deeper understanding of embryology and rapidly evolving genetic tools have resulted in the implementation of accurate genetic diagnostic testing in fertilization cycles.

Preimplantation genetic diagnosis (PGD) is a procedure that involves the genetic testing of one or more cells from an oocyte or an embryo prior to transfer. PGD may be used to avoid the transmission of genetic disorders to the offspring and it is thus indicated for carriers of single-gene disorders and known structural chromosomal abnormalities.

Preimplantation genetic screening (PGS) uses PGD methods in order to analyze the chromosomal number of biopsied cells with the aim of selecting euploid embryos for transfer. Chromosomal aneuploidy is very common in human preimplantation embryos and it is thought to be a major cause of IVF failure (Morales et al. 2008). Thus, PGS has been commonly used in chromosomally normal patients with a history of recurrent miscarriages, implantation failure, severe male factor or advanced maternal age, with the main objective of improving their clinical outcome. Compared to PGD, its practice is a bit more controversial.

PGD was first successfully performed in 1990 to avoid the transmission of chromosome X-linked disorders (Handyside et al. 1990). In these cycles, a region of chromosome Y was amplified by polymerase chain reaction (PCR) in order to select unaffected female embryos. Shortly afterward, a genetic testing method alternative to PCR that used a single biopsied blastomere and DNA probes labeled with fluorochromes was developed: fluorescent in-situ hybridisation (FISH). FISH became an extended diagnostic tool not only for embryo sexing but also for the analysis of aneuploidy and chromosomal rearrangements (Munne et al. 1993b; Munne et al. 1993a). However, FISH-based methods have serious technical limitations: there is only a small number of chromosomes that can be screened per cell and there can be errors of interpretation caused by overlapping or split signals in single nuclei. These factors, combined with the use of FISH on cleavage stage embryos, a time where mitotic errors can lead to mosaicism, are some of the reasons why initial randomized PGS studies failed to enhance IVF outcomes (Mastenbroek et al. 2011). Therefore, in the last years, the focus has shifted towards the use of molecular genetic techniques that allow a comprehensive analysis of all 23 pairs of chromosomes and overcome the aforementioned limitations.

Currently, the most common method to diagnose monogenic disorders is based on the use of single-cell multiplexed amplification of highly polymorphic markers (Short Tandem Repeats, STR) that are close to the mutation site (Harton et al. 2011). This approach has been also extended to human leukocyte antigen (HLA) typing, which can facilitate the birth of a healthy HLA-matched infant, a potential donor for the affected sibling (Fiorentino et al. 2004). Although highly accurate, these tests are customized per patient or locus, which makes them labor-intensive and time-consuming.

The arrival of whole-genome amplification protocols and single cell-based library preparation methods that generate sufficient quantities of DNA have made genome-wide analysis possible. Recently, a highly efficient method named karyomapping was introduced in the clinical practice (Handyside et al. 2010). Karyomapping allows the simultaneous detection of chromosomal abnormalities and monogenic disorders in a single test (Konstantinidis et al. 2015; Natesan et al. 2014; Thornhill et al. 2015). It involves the genotyping of thousands of single nucleotide polymorphisms (SNPs) spread throughout the genome in the parents and a relative of known disease status, thereby identifying heterozygous informative SNPs loci and their inheritance pattern in the IVF embryo. The main advantage is that karyomapping offers a highly accurate universal combined test and provides relatively rapid protocol development, which promises to simplify PGD cycles in the near future.

PGS techniques have also changed dramatically in the last 25 years. In order to provide a more accurate screening of embryos, several techniques that allow a comprehensive analysis of the entire chromosomal complement have been developed (Handyside 2013). Some of them include real-time quantitative PCR (qPCR) (Treff et al. 2012), microarray-based methods such as array comparative genomic hybridization (aCGH) (Gutierrez-Mateo et al. 2011) and SNP arrays (Treff et al. 2010), and more recently,
next generation sequencing (NGS) (Wells et al. 2014). aCGH is particularly robust and was the first technique to be widely available for reliable copy number analysis of all chromosomes with a short turnaround time. Multiple randomized clinical trials have validated these methods and provided strong evidence that aneuploidy screening through PGS can be translated into a better clinical outcome (Schoolcraft and Katz-Jaffe 2013; Scott et al. 2013; Yang et al. 2013).

Particularly exciting is the implementation of NGS to the PGD/PGS field. NGS involves fragmenting genomic DNA from the biopsied cells, followed by parallel sequencing until a sufficient number of reads is achieved. This level of coverage will determine the application of NGS. Low depth of genomic coverage has been shown to be sufficient for aneuploidy detection (Fan et al. 2015; Fiorentino et al. 2014; Wells et al. 2014; Yin et al. 2013). Deeper sequencing offers the possibility of a more powerful and comprehensive analysis, which can lead to the detection of single-gene defects (Treff et al. 2013). Although some technical limitations remain, due to rapidly evolving sequencing technologies and declining costs, NGS of the entire embryo genome might become a reality of the clinical practice in coming years. This will unavoidably raise ethical questions and pose challenges for data interpretation and patient counseling. Nevertheless, it will provide an unprecedented amount of information that will help geneticists and clinicians gain a deeper understanding of the biology of the embryo.

Although the development of accurate non-invasive methods for assessing embryo aneuploidy is desirable, PGD-NGS remains the only reliable approach to guarantee the transfer of a chromosomally normal and unaffected embryo. Continuous advances in genetic testing open up exciting venues for the future and the implementation of cost-effective, highly-accurate diagnostic methods hold the potential to have profound implications in the way embryo normalcy is determined, to strengthen the position of PGD in IVF cycles, and to ultimately benefit patients and treatment success rates.

References

Scott, R. T., Jr., et al. (2013), ‘Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial’, Fertil Steril, 100 (3), 697-703.
Multicentre study of the clinical relevance of screening IVF patients for carrier status of the annexin A5 M2 haplotype

Simon Fishel a,*, Rashmi Patel b, Alison Lytollis b, Jeanette Robinson c, Mary Smedley d, Paula Smith e, Craig Cameron f, Simon Thornton g, Ken Dowell g, Glenn Atkinson b, Adel Shaker e, Philip Lowe d, Rahnuma Kazem c, Sandra Brett f, Anna Fox f

a CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, United Kingdom; b CARE Manchester, 108–112 Daisy Bank Road, Victoria Park, Manchester M14 5GH, United Kingdom; c CARE Northampton, 67 The Avenue, Cliftonville, Northampton NN1 5BT, United Kingdom; d CARE Nottingham, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, United Kingdom; e CARE Sheffield, 24–26 Glen Road, Sheffield S7 1RA, United Kingdom; f CARE Dublin, Beacon CARE Fertility, Beacon Court, Sandyford, Dublin 18, Ireland

* Corresponding author. E-mail address: simon.fishel@carefertility.com (S Fishel).

Simon Fishel is CEO of CARE Fertility Group. He commenced research at Cambridge University with Bob Edwards in 1975. In 1980, he joined Patrick Steptoe and Bob at the start of Bourn Hall and was also awarded the prestigious Beit Memorial Fellowship and Research Fellowship at Churchill College. He has published more than 200 papers and three books and has received many international awards. Founder of the world’s first degree course in IVF in 1992, he was awarded an Hominem Personal Professional Chair in 1997 and 2009 received Liverpool John Moores University highest honour of University Fellow for ‘outstanding contribution to science and to humanity’.

Abstract Thrombophilia and impaired placental vasculature are a major cause of adverse pregnancy outcome. In 2007, a new hereditary factor for obstetric complications and recurrent pregnancy loss (RPL) was identified as a sequence variation in the core promoter of the annexin A5 gene, ANXA5, called the M2 haplotype. M2 carriership has been demonstrated in couples with recurrent miscarriage and its origin is embryonic rather than specifically maternal, confirmed by subsequent papers. The M2 haplotype is the first report of a hereditary factor related to pregnancy pathology caused by embryonic-induced anticoagulation. It has been demonstrated that couples with RPL had equal and significantly increased M2 carriership and that maternal and paternal carriership confers equal risk. Given its importance for patients with RPL, and potentially implantation failure, this study assessed the incidence of carrier status for the M2 ANXA5 haplotype in both the male and female of couples attending five CARE IVF centres. In 314 patients (157 couples), 44% of couples (one or both partners), 24% of females, 26% of males and 37% of couples with unexplained infertility were M2 carriers. This high incidence has provoked further urgent studies on specific patient populations and on the value of post embryo-transfer therapy.

KEYWORDS: ANXA5, infertility, miscarriage, recurrent pregnancy loss, thrombophilia

This article was published in Reproductive BioMedicine Online, Vol 29, 2014, p80-87, Multicentre study of the clinical relevance of screening IVF patients for carrier status of the annexin A5 M2 haplotype. Copyright Elsevier. It is reprinted here with permission.

Introduction

Thrombophilies are a major cause of adverse pregnancy outcome (Markoff et al., 2011) and there is increasing evidence to suggest that impairment of placental vasculature increases the risk of recurrent pregnancy loss (RPL), intrauterine fetal death, gestational hypertension, preeclampsia, venous thromboembolism, fetal growth restriction and small-for-gestational-age (SGA) newborns (Chinni et al., 2009; Grandone and Margaglione, 2003; Grandone et al., 2010; Tiscia et al., 2009, 2012; Younis and Samueloff, 2003).

Normal pregnancy is an acquired hypercoagulable state and therefore women with a genetic predisposition to thrombophilia may develop clinical signs of coagulation defects de novo during pregnancy or during the post-partum period (Chunilal and Bates, 2009; Rey et al., 2003). The predisposing role of hereditary thrombophilic factors has been reported in several clinical studies (Rodger et al., 2010), and historically, in the majority of patients, the hereditary factor has been Factor V Leiden or prothrombin (Bick, 2000). However, in 2007 a new hereditary factor
for RPL and additional thrombophilia-related obstetric complications was identified (Bogdanova et al., 2007; Chinni et al., 2009). This defect, termed the M2 haplotype, is a sequence variation in the core promoter of the annexin A5 gene, ANXA5. It consists of four consecutive nucleotide substitutions in the core promoter and results in reduced expression of ANXA5 in placentas from M2 haplotype carriers when compared with noncarriers.

Annexin A5 is a member of the annexin protein family which share the properties of binding calcium and phospholipids. It is distributed abundantly and ubiquitously, mostly in the kidney, liver and placenta (Morgan et al., 1998). It is most abundant on the apical membranes of placental syncytiotrophoblasts, the interface between maternal and fetal circulation. ANXA5 was originally named ‘placental anticoagulant protein’. It has been extensively studied both in vivo and in vitro (Romisch et al., 1991; Thiagarajan and Tait, 1990). It has potent anticoagulant properties associated with its phospholipid-binding activity and is one of the few annexins to be found extracellularly (Gerke et al., 2005). The ability of ANXA5 to form two-dimensional aggregates on cell membranes has led to the development of the ANXA5 ‘protective shield’ model that postulates that ANXA5 shields phospholipids at this site from availability for coagulation reactions and thus contributes to the maintenance of blood fluidity in the placenta. Annexin 5 is deficient in placentas of patients with antiphospholipid syndrome (APS), and antiphospholipid antibody-mediated reduction of annexin 5 on vascular endothelium may also contribute to systemic thrombosis (Rand, 1999). Bogdanova et al. (2012) revisited the annexin A5 protective shield model and reported that preliminary genotyping analysis of a cohort of 30 lupus anticoagulant-positive patients with obstetric APS revealed that 11 out of the 30 were M2 carriers and this would correspond to a 3-fold relative risk to develop obstetric antiphospholipid antibodies.

Markoff et al. (2010) reported not only that decreased ANXA5 expression in M2 ANXA5 placentas (including those from women with fetal growth restriction and or pre-eclampsia) is the result of carriage of the M2 haplotype, but that this occurred regardless of parental origin, with obvious consequences for embryonic- rather than wholly maternal-induced risk. They observed that the normal ANXA5 allele does not compensate for observed M2 allele-specific decreased mRNA concentrations and made the significant finding that, unlike Factor V Leiden and prothrombin where paternal thrombophilic genes are not associated with RPL (Toth et al., 2008), the M2 ANXA5 allele acts via the embryo.

The work of Markoff et al. (2010) led to a pilot study of 30 RPL couples where all other causes of RPL had been excluded (including inherited thrombophilias and APS; Rogenhofer et al., 2012). The study confirmed that male and females in these RPL couples had equal and significantly increased M2 carrierness when compared with control populations. The authors concluded that paternal and maternal carriage of the M2 ANXA5 haplotype associate with RPL and confer equal risks. They further reported that M2 ANXA5 is the first instance of a hereditary factor causing pregnancy pathology by affecting embryonic anticoagulation (Rogenhofer et al., 2012).

Tüttelmann et al. (2012) undertook a risk stratification study of an IVF cohort of 695 German women compared with 500 fertile female controls and 533 population controls. The carriers of the M2 haplotype had a higher relative risk (1.4) of belonging to the IVF group in comparison with fertile female controls and a higher relative risk (1.2) compared with population controls. This overall risk was due to a subgroup of women with previous pregnancy losses and for this group the relative risks were 3.8 and 2.3, respectively. The authors reported that there was no association with biochemical pregnancy loss, implantation rate, ovarian reserve, hormone status, number and quality of egg cells and general embryonic development. However, there was no male partner genotyping data available.

Ueki et al. (2012) in their knockout murine model found significant reductions both in litter size and fetal weight in ANXA5-null mice (ANXA5-KO) and thus demonstrated that the maternal supply of ANXA5 to the circulation was crucial for maintaining normal pregnancy. They further observed that cross-breeding of ANXA5-KO and wild-type mice showed that only litters bred using ANXA5-KO females had reduced numbers of pups. They also demonstrated that administration of heparin on pregnancy days 12, 14 and 16 to ANXA5-KO mice significantly increased litter size.

Evidence to date suggests that maternal and paternal carriage of the M2 ANXA5 haplotype confers equal risks and acts via the embryo, causing pregnancy pathology by affecting embryonic coagulation unlike the other wellcharacterized thrombophilias. Additionally there is a high incidence of carrier status in both control and subfertile populations, including patients with RPL. In the context of the IVF population, it is essential to understand potential endometrial and/or blood-borne factors responsible for IVF failures. Thus, this work performed a multicentre study of the incidence of carrier status of the M2 ANXA5 haplotype in both partners attending IVF clinics and to ascertain the potential relevance to pretreatment screening.

Materials and methods

Study population

Patients were recruited between March 2012 and February 2013 from patients attending five CARE fertility clinics. Informed consent was obtained from all patients. During this period, 314 patients (157 couples) presented with at least one previously failed IVF cycle (mean 1.9 IVF and 0.2 intrauterine insemination). A detailed clinical history was obtained, and the genotyping for presence or absence of carriage of the M2 ANXA5 haplotype formed
part of the diagnostic investigations for infertility.

The mean (range) age of women was 36.3 years (23–49 years) and that of their partners 38.6 years (23–64 years). The mean body mass index of the women was 25.5 kg/m² (19–40.5 kg/m²) and that of their partners was 33.7 kg/m² (21–36 kg/m²). The selection of patients for screening was based on their prior history and the patients’ willingness to be tested, following the detailed nature of the study being provided to them at consultation. Women were screened for antiphospholipid antibodies.

With regard to their infertility status, the majority of the male population had oligospermia (48%), asthenozoospermia (27%) or azoospermia (13%). These varied according to carrier status with an incidence in the noncarriers of 41%, 26% and 11%, respectively, and for the carriers 35%, 12%, and 12%, respectively. With regard to women, the most prevalent causes of infertility were unexplained (27%), poor ovarian reserve (17%), polycystic ovary syndrome (PCOS; 11%) and endometriosis (6%); according to carrier status, incidence in the noncarriers was 30%, 16%, 16% and 3%, respectively, and for the carriers 26%, 9%, 18%, and 8%, respectively.

The majority of patients were white British (77% men and 75% women) and Indian/Pakistani (8%) the remainder being of diverse ethnicity. As a whole, this cohort is representative of the demography of the UK and Eire. DNA was collected from couples either by a blood sample (the first cohort) or buccal cell analysis on specific collection paper (the remaining cohort) from September 2012. Extensive laboratory tests were undertaken to ensure the transfer to buccal cell collection caused no deterioration in the quality of the DNA. DNA was extracted from white blood cells using QIAmp DNA Blood Mini kit (Qiagen, Hilden, Germany) or from elution from the collecting paper. PCR reactions were carried out on 100 ng genomic DNA isolated from blood samples using the QIAmp Blood Mini kit or from purified collecting paper punches. Amplification was carried out using Biotaq Polymerase (Bioline Reagents, London, UK) in a volume of 25 μl containing 10x NH4 reaction buffer: 160 mmol/l (NH4)2SO4, 670 mmol/l Tris–HCl (pH 8.8), 50 mmol/l MgCl2 (final concentration 1.5 mmol/l), 50 pmol/l forward and reverse primers, 200 mmol/l dNTP, PolyMate Additive (Bioline) and 2.5 U Biotaq polymerase. The cycling conditions were 94°C for 45 s, 30 cycles of 94°C for 30 s, 60°C for 30 s and 68°C for 1 min and a final extension step of 7 min. Amplification products were purified using standard column purification methods (Zymo ZR-96DNA Clean and Concentrator kit; Zymo Research, Irvine, CA, USA). Purified amplicons were sequenced using ABI BigDye Terminator chemistry version 3.1 using standard conditions and electrophoresis on an ABI 3730xl DNA analyser and traces were analysed and genotyped using ABI Seqscape version 2.5. (Applied Biosystems, Foster City, CA, USA). The presence of the M2 haplotype (a set of four consecutive nucleotide substitutions in the ANXA5 promoter: 19G>A (rs112782763), +1A>C (rs28717001), 27T>C (rs28651243) and 76G>A (rs113588187)) was investigated. When only two of the four variants (+1A>C, 27T>C) were present, the haplotype was defined as M1.

Quality control

All genotype calls were made using Seqscape software (Applied Biosystems) with a 25% mixed-base calling threshold. Seqscape was programmed to analyse nucleotide variations at four specific bases, as described in the literature Bogdanova et al (2007). Results were generated in the form of a mutations report that detailed mutations across the region of interest. Report production was carried out by means of an in-house laboratory information management system, which was programmed to only allow certain combinations of mutation. Any sample that gave an unexpected result was flagged by the system and checked by an operator before repeating the test on a fresh sample.

Genotyping and statistical analysis

Patients who were heterozygous carriers or homozygous for the M2 ANXA5 haplotype were recorded as affected heterozygous or affected homozygous. Tests for deviations from Hardy–Weinberg equilibrium (HWE) were performed using the method of Guo and Thompson, 1992 (also used by Bogdanova et al., 2007 and Rogenhofer et al., 2012). This test was performed within the male and female groups and overall.

This work also tested all individuals not classified as white British or white Irish to see whether this affected the results. To check whether the significant deviation from HWE observed in the female subgroup could be attributed to chance, 155 individuals were subsampled at random from the entire set (men and women combined) and the P-value for deviation from HWE was estimated using the same method. This procedure was performed 1000 times, and of these, only three P-values were more extreme than those observed for the all-female group, thus suggesting that the deviation from HWE in women was real and not attributable to chance.

The controls used for comparison were those used by Rogenhofer et al. (2012) from a population control sample drafted from the PopGen biobank at University Clinic Schleswig–Holstein Kiel (n = 533). PopGen population controls were from northwest Germany and were healthy subjects identified through official population registers (Krawczak et al., 2006). The sample used in this study comprised approximately equal numbers of men and women distributed among three age groups (18–30, 30–50 and 50–80 years). The cohort of Muenster fertile controls were anonymized individuals from the institute’s registry (Rogenhofer et al., 2012), all with successful pregnancies and no documented history of RPL.
Results

Six patients were not genotyped: four men (two azoospermia, one oligospermia and one aged 65) and two women (one early menopause and one menopause). Of the remaining 314 patients (157 couples), the overall M2 carriage rate was 25% (n = 78) and was of similar incidence in women (24%, n = 37) and men (27%, n = 41). However, in couples, there was a high incidence of M2 carriage (defined as one or both partners being M2 carriers or homozygotes; 44%, n = 69). None of these patients tested positive for APS.

Among these carrier couples were small subsets of couples in which one partner was a noncarrier and one was homozygous (4%, n = 7), both partners were carriers (4%, n = 6), or one partner was a carrier and one was homozygous (2%, n = 3). There were nine homozygotic women and one homozygotic man. The genotype frequencies of ANXA5 promoter haplotypes observed in this study and expected under HWE in men and women are presented in Table 1. There was no significant deviation from HWE in men, but there was significant deviation from HWE in women (P = 0.005). Restricting the analysis to only those individuals classified as white British or white Irish gave similar results (data not shown).

The genotype frequencies of ANXA5 promoter haplotypes in the current study are compared with two control groups in Table 1. The abundance of the M2 haplotype was enriched in both men and women compared with both the Muenster controls (women) and the PopGen controls (men and women).

The IVF female patients were not in HWE (P = 0.0052) owing to the excess of M2 heterozygotes but particularly M2 homozygotes (9 observed versus 3.4 expected). To check whether the significant deviation from HWE observed in women could be attributed to chance, this work subsampled 155 individuals at random from the entire set (men and women combined) and estimated the P-value for deviation from HWE using the same method and recorded the P-value. We performed this procedure 1000 times, and of these only three P-values recorded were more extreme than those observed for the all-female group, thus suggesting that the deviation from HWE in women was real and not attributable to chance.

The patients’ previous IVF, intrauterine insemination and pregnancy histories are shown in Table 2. The numbers of previous failed IVF cycles were highest in couples who had one homozygotic partner and one noncarrier (mean 3.1 previous IVF) and in couples where the male partner was a carrier (mean 2.1 previous IVF).

Previous live births were very low in all carrier/homozygous groups (range 0–4) and a slightly higher incidence was observed in noncarrier couples (n = 13). The patients’ most recently reported miscarriage in carrier couples occurred at a mean of 10.1 weeks (range 5–23 weeks) in the 17 miscarriages where date of loss was reported. In noncarrier couples, miscarriage (n = 53) occurred at a mean of 9 weeks (range 5–26) in 25/53 miscarriages.

Male infertility and M2 frequency

Overall, 63 of 157 men (40%) had associated infertility factors. Carriage incidence in this group was 27% (n = 17). Overall, oligospermia was the most frequent finding (40%, 25 infertile men) followed by oligoasthenoteratozoospermia (13%, eight infertile men). However there is unlikely to be any relationship or causal linkage between the existence of the M2 haplotype and male infertility.

Of 157 women, 93 (59%) had a diagnosis of infertility
ARTICLES

other than unexplained or male factor. Additionally, 25 of the 93 women with a diagnosis (27%) were also found to be M2 carriers. Unexplained, poor ovarian reserve/ovulation failure often linked to age plus PCOS were the most frequently cited causes of infertility in both groups. However, male infertility was cited as the primary cause of infertility in 21% of noncarrier couples but noted in only one of 37 women who carried the M2 haplotype. Six out of 17 PCOS cases (35%) were also carriers.

Unexplained infertility and M2 frequency

Overall, 104 patients (33%) presented as having no explanation for infertility. Of these, 38 patients (37%) were identified as M2 carriers: 25 men (24%) and 13 women (13%). There were nine homozygotic women (6% of all women) There was also one homozygotic man aged 49 for whom the couple had no other known diagnosis although his partner had had two IVF cycles which had resulted in miscarriage.

Discussion

Carriership of the M2 ANXA5 haplotype in this cohort of patient couples was 44%, representing a very high incidence. Furthermore it was present in 27% of male infertility patients, 27% of female infertility patients and in 37% of patients with previously unexplained reasons for infertility. Additionally, it was present in 35% of PCOS patients, which has been reported by Rogenhofer et al. (2013) who note that the M2 ANXA5 haplotype is independently associated with RPL in PCOS patients. Of the patients who carried the M2 haplotype in the present study, none tested positive for APS. Bogdanova et al. (2012), in a cohort of 30 lupus anticoagulant-positive patients with obstetric APS, reported 11 as M2 carriers; It is possible that the observed variance is a result of the infertility cohort in this study being a different group of patients than those with ‘obstetric complications’.

The genotype distribution in men and women was similar to that reported by Rogenhofer et al. (2012) where a RPL cohort was compared with three different control groups. Genotype M1/M1 was absent in the RPL cohort and rare in controls. Genotype M1/M2 was not observed in the RPL cohort and seen only in a total of eight from control groups and in only four patients in the current IVF cohort. However, the incidence of M2 homozygotic women was elevated at 6% in this cohort and one M2 homozygotic man was recorded. Female homozygote frequency was 3-times higher than that reported from other control groups and double that of RPL women (Rogenhofer et al., 2012).

The use of the PopGen and Muenster controls is justified as Nelis et al. (2009) concluded that four areas could be identified – namely: (i) central and western Europe; (ii) the Baltic countries, Poland and Western Russia; (iii) Finland; and (iv) Italy – which, if not corrected for, the interpopulation differences would affect the significance of disease gene associations. The incidence in controls from published studies from Germany, southern Italy and Bulgaria – representatives of three of these regions – have all shown consistency in the M2 haplotype frequency. The majority of the IVF patients were white British (77% men, 75% women), which correspond to the central and western Europe region. This study had no Finnish patients and analysis with and without the subset of Indian/Pakistani
and others still showed the significant departure from HWE in women but not in men, mainly due to the abundance of M2 homozygotes.

In terms of ethnicity, this study found M2 carriers in a wide range of ethnicities, including Jewish, Turkish and Middle Eastern in addition to Indian and Pakistani patients. The possible differences in carriage rate and clinical effects in these ethnicities warrants further investigation since there may be significant differences in incidence and pathology. The incidence in Caucasian populations of Europe is well established (Markoff et al., 2011) and Miyamura et al. (2011) reported that carriage of the haplotype resulted in risks for RPL in the Japanese population similar to that observed in the populations of central Europe; however, the incidence of RPL was lower in Japan (5.5 versus 15%). Thus further study of different ethnicities other than white Europeans and Japanese is warranted.

M2 is a hereditary factor that causes various pathologies during pregnancy by adversely affecting embryonic anticoagulation (Markoff et al., 2010; Rogenhofer et al., 2012). A very recent paper on RPL in German and Bulgarian patients by Tüttelmann et al. (2013) provides further evidence that paternal carriage contributes similar risk to that of maternal carriage, as reported by Markoff et al. (2010) who showed nonpreferentially and equally reduced ANXA5 mRNA expression in chorionic placenta carrying maternal or paternal alleles.

Although Ueki et al. (2012) could only demonstrate a maternal influence on pregnancy viability from their ANXA5-KO murine model, the human placental study of Markoff et al. (2010), which has been further confirmed by Rogenhofer et al. (2012), supports earlier work on the embryonic influence on placental function (Rand et al., 1997). Rand et al. (1997) demonstrated that the fetal component has a characteristically evident pattern of ANXA5 expression on the apical surface of the syncytiotrophoblast layer lining the chorionic villi. Furthermore, as concluded in Malassine’ et al. (2003), there should be caution in extrapolating data from experimental models, particularly in studies of the pathophysiology of complications of pregnancy with a placental origin.

Any impairment of embryonic coagulation is of particular importance in IVF practice since the focus is often on managing and providing for healthy gametes and embryos, selecting for optimal embryo viability and ensuring a healthy uterus able to sustain a pregnancy. However, although the largest single cause of miscarriage is believed to be the aneuploid embryo, other factors are clearly of significance, especially in RPL cases, where it can remain an issue even after the transfer of euploid embryos following IVF. The relatively recently discovered genetic factor M2 ANXA5 is alone in influencing placental function via adverse effects on embryonic anticoagulation and, if undetected, could negate the considerable work and cost incurred to establish a healthy pregnancy via IVF. In this study, there were a significant number of patients, equally distributed between men and women, where M2 carriage was either an additional factor to those already determined or it was present in a significant number of patients with no other infertility diagnosis. There is a growing body of evidence of the risks of carriage of the M2 ANXA5 haplotype to maternal health (RPL, venous thromboembolism, pre-eclampsia, gestational hypertension, APS; Bogdanova et al., 2012; Grandone et al., 2010; Tiscia et al., 2009). Bogdanova et al. (2012) postulated that carriage of the M2/ANXA5 haplotype leads to reduced ANXA5 cover of exposed phosphatidylserine surfaces, and this reduced shielding would allow coagulation factors to compete for phospholipid binding. Secondly, there would be greater exposure of phospholipid antigenic factors, that would then lead to antiphospholipid antibody development, which in turn would further disrupt the ANXA5 shield. Sifakis et al. (2010) demonstrated significant differences in mRNA expression between normal and fetal growth restriction pregnancies but no difference in ANXA5 protein concentration. However, the authors did not genotype their samples for M2 ANXA5.

A significantly higher prevalence of the M2 haplotype in a group of women with a history of idiopathic SGA babies has been reported (Tiscia et al., 2012), demonstrating a 2-fold higher risk of giving birth to a SGA newborn. All the M2 homozygotes in this study (there were no homozygotes in the controls) had a history of a severe SGA (below the 3rd percentile). Recently, a large cross-sectional study (Henriksson et al., 2013) was determined the incidence of pulmonary and venous thromboembolism in pregnancies after IVF and reported an increased risk of thromboembolism and, importantly, pulmonary embolism. The risk of venous thromboembolism increased during all trimesters, particularly during the first trimester, as did the risk of pulmonary embolism. The study concluded that ‘efforts should focus on the identification of women at risk of thromboembolism, with prophylactic anticoagulation considered in women planning to undergo in vitro fertilization.’

Nelson and Greer (2008) conducted an extensive review of the similarities of heparin and heparan, the haemostatic changes induced by ovarian stimulation and the risk of thrombosis, the contribution of thrombophilia to pregnancy and infertility outcomes, early embryonic–maternal dialogue and how these various aspects of assisted conception may be modified by heparin. The authors concluded that heparin has the potential to improve pregnancy rates and outcomes. Recently, Seshadri et al. (2012) conducted an extensive meta-analysis of observational and randomized studies on the effect of heparin on the outcome of IVF treatment. The meta-analysis of the observational studies showed a significant increase in clinical pregnancy and live birth rates and the authors concluded that that the role of heparin as an adjuvant therapy during IVF treatment required further evaluation in adequately powered high-
quality randomized studies. They further suggested that such studies could either target the general IVF population or a specific subgroup of patients including those with known thrombophilia or recurrent implantation failure. In the absence of such studies and in view of the recent important findings from Henriksson et al. (2013) and the high incidence of the M2 ANXA5 haplotype within the current IVF cohort, this study’s fertility centres have taken a pragmatic view to identify and treat patients who are carriers of the M2 ANXA5 haplotype, which is now known to be an inherited thrombophilia adversely affecting embryonic anticoagulation. In 2001, the Royal College of Obstetricians and Gynaecologists reviewed four randomized controlled trials in women with two or more pregnancy losses treated with low-dose aspirin with and without low-molecular-weight heparin (Scientific Impact Paper 26). It noted that these studies failed to demonstrate improvement in live birth outcome. They further noted that these studies were underpowered to be able to confirm or refute effects in women with three or more losses or those with thrombophilia. However, when this opinion was advanced there was no knowledge of the existence of the M2 ANXA5 haplotype in women with RPL. Indeed the authors stated that ‘there remain unidentified inherited thrombophilias’. Furthermore the findings that paternal carriage contributes a similar risk to that of maternal carriage and that the defect is conveyed embryonically were also unknown, reflecting the need to understand an appropriate stratification of patients. This study’s fertility centres are adopting the approach of offering screening of patients for carriage of the M2 haplotype with a view to identifying women at risk not only of pregnancy loss but for the additional risks conferred by this thrombophilic genetic defect. While appreciating that this is an incidence study only, the current practice advice for women identified at risk (either because she and/or her partner are carriers) in this study’s fertility centres is that they be treated from implantation to near term with low-molecular-weight heparin. If the woman is a carrier, treatment for 6 weeks post partum is advised to reduce the risk of maternal venous thromboembolism. In terms of risk to the fetus, a recent case–control study (Tiscia et al., 2012) reported that carriage of the M2 ANXA5 haplotype was an independent risk factor for idiopathic SGA newborns and that women carrying the M2 haplotype had a 2-fold higher risk of giving birth to an SGA baby. In addition they reported a 6% incidence of homozygotes which is similar to the 6% incidence in the current cohort. In their study, all M2 homozygotes had a history of a severe SGA (below the 3rd percentile).

It is possible to speculate that M2 homozygotic women may be at greater risk of thrombotic events by virtue of the decrease in their own endogenous ANXA5 during pregnancy; thus identification of this subset of patients before IVF treatment is important since from this study their IVF cycle failure rate is higher than for noncarriers. This study reports a single homozygotic man with no other infertility diagnosis whose partner had had two previous failed IVF cycles. Rogenhofer et al. (2012) interestingly noted no M2 homozygotic men in their cohort of 30 RPL couples. It is already well established (RCOG–SAC Opinion Paper 8, 2007) that the risk of low birthweight for IVF singletons is significantly higher than for naturally conceived singletons (incidence of SGA 12.6% versus in England 7.5%, reported by the London Health Observatory (2002–2004)). Thus identifying and treating women who are themselves M2 carriers or whose partner is a carrier may assist in reducing the incidence of SGA by mitigating the adverse effects on embryonic anticoagulation. There are long-lasting health costs associated with low birthweight in infants and this aspect warrants further study.

In conclusion, since the defect is conveyed embryonically and affects embryonic anticoagulation and also the risk is independent of any specific parental transmission (i.e. it can be induced whether the transmission is maternal or paternal or both), screening of both partners presenting for IVF for carriage of the M2 ANXA5 haplotype ought to be considered as routine and early in the diagnostic work up of couples being treated with their own gametes. The M2 haplotype appears to be an additional independent factor that contributes to the risk of pregnancy failure.

Further work accessing trio genotyping data of paternal, maternal and infant origin together with outcome is required to determine whether there are differences in outcome if both mother and child are carriers of the M2 haplotype. Additionally further consideration should be given to a test-and-treat critical pathway for those receiving donated gametes, embryo donors and surrogate mothers.

References

AMH and AMHR2 genetic variants in Chinese women with primary ovarian insufficiency and normal age at natural menopause

Chunrong Qin a, Zhen Yuan a, Jilong Yao a*, Wenjie Zhu a, Weiqing Wu b, Jiansheng Xie b

a Center for Reproductive Medicine, the Affiliated Shenzhen City Maternity and Child Healthcare Hospital of Southern Medical University, Shenzhen, China; b Department of Central Laboratory, the Affiliated Shenzhen City Maternity and Child Healthcare Hospital of Southern Medical University, Shenzhen, China

* Corresponding author. E-mail address: yao13823@sina.com (J Yao).

Professor Chun-rong Qin obtained her Master’s degree in 2005 from San-yat-sun University in China and she received her Doctor’s degree in reproduction medicine from the Southern Medical University in 2011. She cofounded the Center for Reproductive Medicine in Shenzhen City Maternity and Child Healthcare Hospital in 2010. She has published over 30 papers. Her research interests include assisted reproduction techniques, optimized ovarian stimulation protocols, prevention of IVF complications, diminished ovarian reserve and premature ovarian failure.

Abstract The aim of this study was to investigate the role of the anti-Müllerian hormone (AMH) signalling pathway in the pathophysiology of idiopathic primary ovarian insufficiency (POI) and age at natural menopause (ANM) using a genetic approach. DNA sequencing was used to detect the genotype distribution and allele frequency of the genes AMH and AMH receptor II (AMHR2) in 120 cases of idiopathic POI and 120 normal-ANM women. Fourteen sequence variants of AMHR2, including 10 novel variants, were identified. Two novel exonic missense variants were p.I209N and p.L354F.

The missense variant p.I209N, which is conserved in different species, was predicted to have functional and structural impacts on the AMHR2 protein. The clinical significance of one additional variant (p.L354F) remains arguable pending functional studies. The genotype frequencies of AMH and AMHR2 were similar in distribution for POI patients and normal-ANM women. These findings suggest that POI patients and normal-ANM women in China share AMH and AMHR2 genetic variants. The AMH signalling pathway associated with ANM also may contribute to POI.

KEYWORDS: age at natural menopause, AMH receptor, anti-Müllerian hormone, primary ovarian insufficiency

This article was published in Reproductive BioMedicine Online, Vol 29, 2014, p311-318, AMH and AMHR2 genetic variants in Chinese women with primary ovarian insufficiency and normal age at natural menopause. Copyright Elsevier. It is reprinted here with permission.

Introduction

Primary ovarian insufficiency (POI) is defined as the cessation of ovarian function under the age of 40 and is characterized by amenorrhea, hypo-oestrogenism and elevated serum gonadotrophin concentrations (Santoro, 2003; Timmreck and Reindollar, 2003). The cause of POI remains undetermined in the majority of the cases. While there is a strong genetic association with POI, familial studies also have indicated that idiopathic POI may be genetically linked (Goswami and Conway, 2005). However, in women with POI, there is usually premature depletion of the primordial follicle pool. This might be caused by defects in oocyte apoptosis mechanisms, leading to either a decrease in follicular formation, resulting in a reduction of oocytes formed during ovarian development, or accelerated follicle loss.

Primordial follicle recruitment is regulated predominantly by intraovarian factors. One of the factors known to regulate initial recruitment in mice is anti-Müllerian hormone (AMH). AMH, a member of the transforming growth factor-β family, is involved in the regulation of follicular growth (di Clemente et al., 2003). It is produced by the granulosa cells of early developing follicles in the ovary. Studies in AMHnull mice have demonstrated that, in the absence of AMH, follicles are recruited at a faster rate and they are more sensitive to FSH (Durlinger et al., 2001). This expression pattern suggests that AMH can inhibit both the initiation of primordial follicle growth and FSH-induced follicle growth. The absence of AMH results in a prematurely exhausted follicle pool and, subsequently, an earlier cessation of the oestrus cycle (Durlinger et al., 1999).

Research has shown that genetic variations in AMH have been associated with age at natural menopause (ANM). Kevenaar et al. (2007) demonstrated correlations of
genetic variants in the gene for AMH receptor II (AMHR2) with ANM in two large cohorts of Dutch post-menopausal women. Voorhuis et al. (2011) investigated genetic variants in genes involved in initial follicle recruitment in association with ANM among 3445 Dutch women participating in Prospect-EPIC. They observed an association between ANM and two singlenucleotide polymorphisms (SNP) in AMHR2. Recent studies in natural-menopause women have demonstrated that a pairwise interaction between two SNP in AMH and AMHR2 in association with ANM (Braem et al., 2013). Women with idiopathic POI or early ANM differ in age of menopause onset and are considered to represent variable expression of the same genetic pattern (Tibiletti et al., 1999). It is highly plausible that certain genes contribute to both. Furthermore, previous studies in POI women have demonstrated that serum AMH concentration was significantly decreased to very low concentrations in POI (Li et al., 2011).

This study investigated, as far as is known, for the first time, whether these genetic variants of the AMH signalling pathway are associated with idiopathic POI in China.

Materials and methods

Subjects

A total of 120 patients (age, mean ± SD, 31.58 ± 6.01 years) with idiopathic primary ovarian insufficiency (POI) and 120 women (age 49.2 ± 5.1 years) with normal ANM were included. The study was approved by the University’s Institutional Ethics Committee (reference no, 20120020, approved 15 March 2012) and informed consent was obtained from all participants.

The diagnostic criteria for POI (Qin et al., 2011) was as follows: at least 6 months of amenorrhoea before the age of 40, with at least two serum FSH concentrations >40 IU/l. Patients with associated endocrinopathies, autoimmune disorders, iatrogenic agents such as pelvic surgery, chemotherapy and radiotherapy and infections were excluded.

The normal ANM in Chinese women is approximately 49 years (Nie et al., 2011). ANM was defined as the age at the last menstrual period, which can only be defined retrospectively after at least 12 consecutive months of amenorrhoea. This last menstrual period should not be induced by surgery or other obvious causes, such as irradiation or hormone therapy. Women who reported hormone use during the onset of menopause were excluded to avoid uncertainty on menopausal age. Each subject was assessed clinically, with a complete medical and gynaecological history, including the history of menses, age at menopause, LH and FSH concentrations (twice at 1-month intervals) and pelvic ultrasound. Karyotyping with high-resolution GTG banding to check for chromosomal anomalies was performed in all subjects. Those with abnormalities were excluded from the study. All patients were sporadic cases and were interviewed by investigators regarding their biological parents and grandparents. They were classified as individuals of Han ethnicity whose families had resided in southern China at least since their grandparents’ generation.

DNA extraction and karyotyping

Peripheral blood was collected in EDTA vacutainers for genomic DNA isolation (5 ml) and in heparin vacutainers for chromosomal analysis (5 ml). Genomic DNA was extracted from lymphocytes using standard proteinase K/chloroform extraction methods (Shelling et al., 2000). Chromosomal analysis was performed on phytohaemagglutinin-stimulated peripheral lymphocyte cultures using standard conventional cytogenetic methods.

PCR protocol

Primers for all the exons were designed using Genefisher software (http://bibiserv.techfak.uni-bielefeld.de/genefisher). The thermal program was 98°C for 3 min and was 35 cycles of denaturation at 94°C for 45 s and extension at 72°C for 45 s. All primer sequences with their corresponding annealing temperatures are summarized in Table 1. The presence of all sequence variants was confirmed by performing three independent PCR reactions and subsequent DNA sequencing.

DNA sequencing

Samples were sequenced using a BigDye Terminator Cycle Sequencing Kit 3.1 and run on a 3730xl ABI DNA Analyser (Applied Biosystems, USA). The sequencing results were analysed using Chromas version 2.3 (Technelysium, Australia) and compared with reference sequences in the National Centre for Biotechnology Information database (http://www.ncbi.nlm.nih.gov).

Statistical analysis

SNPAlzyer 5.0 software (DYNACOM, Japan) was used to evaluate Hardy–Weinberg disequilibrium. Chi-squared test was performed using SPSS 13.0 (SPSS, Chicago, IL, USA). Three web-based programs were used to evaluate the possible biological effects of amino acid substitution on the structure and function of the AMHR2 protein: (i) Polymorphism Phenotyping (PolyPhen; http://genetics.bwh.harvard.edu/pph/); (ii) Sorting Intolerant from Tolerant (SIFT; http://sift.jcvi.org/); and (iii) Prediction of Polymorphism Phenotyping (PMut; http://mmb2.pcb.ub.es:8080/PMut/). Possible alterations of protein motifs and functional sites were assessed by scanning through the PROSITE database (ScanProsie; http://www.expasy.org/prosite/). This work also examined evolutionary conservation of the amino acid residues in these variants by multiple sequence
alignment using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).

Results

The sequencing data collection and analysis were successfully performed for the coding regions and respective flanking intronic regions of AMH and AMHR2 in all subjects. The populations were in Hardy–Weinberg equilibrium for all of the genetic variations. The clinical characteristics of the two populations are presented in Table 2.

Sequence variants detected in AMHR2

Sequence analyses of 120 idiopathic POI patients and 120 normal-ANM women revealed 14 sequence variations, including 10 novel SNP in AMHR2. These novel variants included two missense variants (Figure 1) and two synonymous variants. Eight intronic variants, including six novel substitutions, were identified (Table 3). Four novel exonic variants were discovered: c.627T>A (p.I209N), c.993C>T (p.H332H), c.1038G>T (p.S347S) and c.1060C>T (p.L354F). The p.I209N and p.L354F variants were not detected in any of the 120 normal-ANM women. The sequencing electrophoretograms of the two novel missense variants of AMHR2 are shown in Figure 2. One patient was heterozygous for the p.I209N variant and the other was heterozygous for the p.L354F variant. Genetic variants in p.I209N and p.L354F were not found in the mothers of these two cases.

Three web-based programs were used to evaluate possible biological effects of the amino acid substitution on the structure and function of the AMHR2 protein (Table 4). For the p.I209N variant, the predictions were ‘Possibly damaging’ and ‘Intolerant’ by PolyPhen and SIFT, and ‘Pathological’ (reliability index of 2) by PMut. PROSITE scanning showed that the variant p.I209N was predicted to affect one ATP binding domain on the AMHR2 protein, which can interact selectively and noncovalently with ATP, a universally important coenzyme and enzyme regulator. Therefore, p.I209N has a high potential to cause disease.

The impact of variant p.L354F was predicted to be ‘Possibly damaging’ by PolyPhen, but was predicted to be ‘Tolerated’ by SIFT (Table 4). Note that the predictions of the PolyPhen and SIFT scores are opposite. Therefore, the PMut program was applied to provide additional assessment. The impact of variant p.L354F was predicted to be ‘Neutral’ by PMut, with a maximum reliability index of 8. PROSITE scanning showed that no structural or functional
Figure 1. Schematic overview of the anti-Müllerian hormone receptor II (AMHR2) gene. Exons, indicated by rectangles, are numbered from 1 to 11. The two novel missense variants, p.I209N and p.L354F, detected by sequence analysis in 120 Chinese women with idiopathic primary ovarian insufficiency are shown.
Figure 2. Sequencing electrophoretograms illustrating the two novel missense variants of anti-Müllerian hormone receptor II (AMHR2), p.I209N and p.L354F, found among 120 Chinese women with idiopathic primary ovarian insufficiency.

domain was present at or around the p.L354F residue. Based on these assessments, the clinical significance of one additional variant (p.L354F) remains arguable, pending functional studies.

Determination of the evolutionary conservation of p.I209N and p.L354F by multiple amino acid sequence alignment of AMHR2 with the protein sequences derived from human (hg19), marmoset (calJac1), gorilla (gorGor1), mouse lemur (micMur1), horse (equCab2), tarsier (tarSyr1), bat (pteVam1), microbat (myoLuc1), elephant (loxAfr3), cat (felCat3), dog (canFam2), cow (bosTau4), rabbit (oryCun2), pig (cavPor3), dolphin (turTru1), rock hyrax (proCap1), mouse (mm9) and kangaroo rat (dipOrd1) showed that both residues 209 and 354 in AMHR2 were highly conserved (Figure 3).

The significance of the analysis was represented following the Bonferroni’s correction guidelines. Analyses were adjusted for multiple testing (14 SNP; \(P < 0.05/14 = 0.0036 \)). On the basis of Fisher’s exact test, genotypic and allelic frequencies for 14 variants were not significantly diverse in POI cases as opposed to normal-ANM women. The details of the genotypic analysis are summarized in Table 3.

Sequence variants detected in AMH

Table 5 compares the genotypic and allelic frequencies of AMH c.146T>G (p.I49S), c.303G>A (p.G101G) and c.546G>A (p.P182P) among the 120 idiopathic POI patients and 120 normal-ANM women. These sequence variants included one missense variant and two synonymous variants. The genotypic and allelic frequencies of all these SNP were not significantly different between the two groups.

Genotype distributions in different populations

This work compared AMH p.I49S and AMHR2 c.–482A>G polymorphisms in different populations. The genotypic and allelic frequencies of AMH p.I49S and AMHR2 c.–482A>G polymorphisms in the Rotterdam cohort, the LASA cohort, Italian, Dutch and Korean cohorts and the current cohort were similar and did not differ from the frequencies in normal-ANM women (Table 6).

Discussion

It has been proposed that variation of menopausal age is largely influenced by genetic factors (Voorhuis et al., 2010). Moreover, genes involved in primary follicle recruitment were associated with timing of menopause in a genetic association study with a large menopausal cohort (Voorhuis et al., 2011). Although it is unclear whether or not POI and menopause have the same genetic mechanisms, there may be a chance that the genes involved overlap each other. AMH clinical research in women has become extensive. Fauser and his colleagues were the first to stress the value of AMH measurements for the assessment of follicular reserve (de Vet et al., 2002; van Rooij et al., 2002; Weenen et al., 2004). In contrast, the role of AMH in human ovarian function appears crucial. Animal studies have demonstrated that AMH represses the LH receptor and aromatase of granulosa cells and the recruitment of primary follicles (Durlinger et al., 1999), leading to premature cessation of ovarian cycling in AMH-knockout

<table>
<thead>
<tr>
<th>Location</th>
<th>Nucleotide change</th>
<th>Residual change</th>
<th>Conserved</th>
<th>PolyPhen</th>
<th>PSIC score</th>
<th>SIFT</th>
<th>Prediction</th>
<th>Score</th>
<th>PMut</th>
<th>Prediction</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 8</td>
<td>627T>A</td>
<td>I209N</td>
<td>Yes</td>
<td>Possibly damaging</td>
<td>0.956</td>
<td>Intolerant</td>
<td>0.00</td>
<td>Pathological</td>
<td>2</td>
<td>RI</td>
<td></td>
</tr>
<tr>
<td>Exon 8</td>
<td>1060C>T</td>
<td>L354F</td>
<td>Yes</td>
<td>Probably damaging</td>
<td>1.000</td>
<td>Neutral</td>
<td>0.35</td>
<td></td>
<td>8</td>
<td>RI</td>
<td></td>
</tr>
</tbody>
</table>

PMut – Prediction of Pathological Mutations; PolyPhen – Polymorphism Phenotyping; PSIC – position-specific independent counts, a scoring system used in PolyPhen; RI = reliability index; SIFT = Sorting Intolerant from Tolerant.

Table 4 Pathogenic potential of the two novel AMHR2 missense variants.
mice (Gruijters et al., 2003). Because AMH has an inhibitory effect on follicle recruitment, polymorphisms on AMH or its receptor AMHR2 might lead to POI.

In this study, both of the genetic variants analysed in AMH and AMHR2 captured all the exons and flanking regions of the gene, including 1 kb of the promoter region. This study provides, as far as is known, the first germ-line case-control status of AMHR2 in Chinese idiopathic POI patients and normal-ANM women and presents a spectrum of 14 sequence variants that includes four novel exonic variants and six novel intronic variants. Two novel missense changes were identified in AMHR2 (p.I209N and p.L354F) that were not found in the normal-ANM women. Four web-based programs (PolyPhen, SIFT, PMut, and PROSITE) were used to evaluate possible biological effects of the amino acid substitution on the structure and function of the AMHR2 protein. The impact of the variant p.I209N was likely to be a deleterious substitution, with consistent predictions by PolyPhen, SIFT and PMut. PROSITE scanning showed that the variant p.I209N was predicted to affect one ATP-binding domain on the AMHR2 protein. Mutations located in the intracellular domain, for instance p.I209N (Figure 1), which is thought to disrupt the substrate-binding site of the kinase domain (Messika-Zeitoun et al., 2001), migrate normally to the cell surface but are unable to transduce the AMH signal. Determination of the evolutionary conservation of this site found that it was highly conserved among different species. Therefore, p.I209N is potentially disease causing. By using these tools, one additional variant (p.L354F) is expected to be clinically significant but remains arguable pending functional studies.

The AMHR2 –482A>G homozygous mutation could result in diminished AMH signalling and, because AMHR2 –482A>G is located at the promoter region, it could possibly cause disequilibrium with several other SNP (Kevenaar et al., 2007). However, the nature of the disequilibrium with other SNP remains unknown. There have been reports that this polymorphism is associated with age at menopause. Nulliparous women with the GG genotype had 1.9–2.6 years’ earlier onset of menopause compared with women with the AA genotype (Kevenaar et al., 2007; Voorhuis et al., 2011), and carriers of AMH 49Ser and AMHR2 –482G alleles had higher follicular phase oestradiol concentrations compared with noncarriers (Kevenaar et al., 2007). An in-vitro study also showed that the bioactivity of AMH is diminished in the AMH 49Ser protein compared with the AMH Ile49 protein (Kevenaar et al., 2008). Interestingly, in the present study, the genotype distributions and allele frequencies for AMH Ile49Ser and AMHR2 –482A>G were similar between the groups. This is in agreement with a previous study (Yoon et al., 2013), in which AMH Ile49Ser and AMHR2 –482A>G did not show any association with idiopathic POI in Korean women. This finding suggests that variants in genes of the AMH signalling pathway are not associated with the timing of menopause.

The genotype distributions for both polymorphisms in this population were consistent with other reports. For AMH Ile49Ser, the genotype distributions were similar to

![Figure 3. Multiple protein sequence alignment of anti-Müllerian hormone receptor II (AMHR2) showing the location of p.I209N and p.L354F. The two residues are highly conserved across different species.](image-url)
those of Asians in the HapMap database (http://hapmap.ncbi.nlm.nih.gov). For the AA genotype in AMHR2 -482A>G polymorphism, the distribution was 62.5% in this study versus 65.2% in the Rotterdam Cohort, 64.1% in the LASA cohort, 63.0% in an Italian cohort, 65.0% in a Dutch cohort and 60.9% in a Korean cohort (Kevenaar et al., 2007; Rigon et al., 2010; Voorhuis et al., 2011; Yoon et al., 2013).

Because POI is a complex trait like menopause, genetic interaction with other factors or other genetic variants of the AMH signalling pathway might also influence the development of POI. Braem et al. (2013) searched for pairwise interactions between the SNP in five genes (AMH, AMHR2, BMP15, FOXL2, GDF9). They found a statistically significant interaction between rs10407022 in AMH and rs11170547 in AMHR2 (P = 0.019) associated with age at natural menopause. These might imply that complex interactions between AMH and AMHR2 play a role in POI and early ANM.

In conclusion, these results suggest that POI patients and normal-ANM women in China share AMH and AMHR2 genetic variants. The AMH signalling pathway associated with ANM may also contribute to POI. However, the number of patients studied limits the interpretation of the results obtained, as does the fact that no molecular study has been performed to support the functional significance of AMH and AMHR2 genetic variants. More research is required to confirm such findings.

Acknowledgements

This study was supported by the Shenzhen City Science and Technology Project (grant numbers 201102094 and 201202073). The authors are thankful to Dr Qian Gen and Dr Chai-chun Luo of Department of Central Laboratory, the
Affiliated Shenzhen City Maternity and Child Healthcare Hospital of Southern Medical University, Shenzhen, PR China for technical help and advice.

References

Evolve Premature Ovarian Failure Screen

#1 in Genetic Fertility Screening

POF, Premature Ovarian Failure, is associated with a low or poor reserve of eggs which diminishes fertility in women.

Mutation analysis of 21 genes which cause POF due to:

- Ovarian dysgenesis
 - NR5A1, BMP15, POF1B, PSMC3IP
- Folliculogenesis & Oocyte Maturation Errors
 - DIAPH2, EIF2B2, EIF2B3, EIF2B5, FMR1, FIGLA, FOXL2, GALT, GDF9, HFM1, LMNA, NOBOX
- Hormonal Dysfunction
 - CYP17A1, CYP19A1, FSHR, LHCGR, POR

Accurate Fragile X FMR1 CGG Repeat Analysis

* Women with FMR1 premutations not only have a high risk of developing POF but they also have an increased risk of having a child with Fragile X syndrome.

The Fragile X FMR1 premutation is found in approximately 1-150 women, putting millions of women at risk for infertility.

* Professional medical societies including the American Congress of Obstetricians and Gynecologists (ACOG) and the American Society for Reproductive Medicine (ASRM) recommend females with infertility issues have genetic screening.

www.EvolveGene.com

Leading the Way in Genetic Fertility Screening